All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 177042 by Ar Brandon last updated on 30/Sep/22
Answered by a.lgnaoui last updated on 30/Sep/22
sommeddsracinesx1+x2=−a2x1x2=a+34a2−19a−5Δ=a4−4(4a2−19a−5)(a+3)>0a4−4(4a3+12a2−19a2−54a−5a−15)a4−4(4a3−7a2−59a−15)Δ=(a+2,714)(a+0,263)(a−6,991)(a−11,986)a4−16a3+28a2+236a+60)x1=(−a2±a4−16a3+28a2+236a+60)/2=x1=−a2−a4−16a3+28a2+236a+602a=0a∈{−14,5}x1=−602<0x2>0∣x∣−x2=60>0a∈]−14,5[satisfait∙a=−1pasdesolutionsreelsdonca∉]−3,−14[∙a=∙a=−4a=−4∈{−∞,−3}x1=−8−(784)/2<0∣x2=−8+(784)/2>0∣x1∣−x2>0∙donca∈]−∞,−3[satisfaitauxconditionsa=−3x1=−92−81+656+84−678+60)/2=−92−113<0(λ>0)x2=−92+113>0∣x1∣−x2=9>0∙donca=−3satisfaita=−2x1=−2−16+128+112−472+60pasdesolutiinsreelsdinca∉]−3,−14[∙a=5x1<0∣x1−x2>0a=5satidfait∙a=6x1=−18−(2344/2)<0x2=−18+(2344/2>0∣x1∣=18+(2344/2)+18−(2344/2)>0∙donca∈[5,+∞[satisfaitsatisfaitauxconditions∙a=−14x1=−132−(1337)/2x2=−132+1337∣x1∣−x2>0∙a=−14satisfaitconclusion:a∈]−∞,−3]∪[−14,5]∪[5,+∞[
Terms of Service
Privacy Policy
Contact: info@tinkutara.com