Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 177068 by LOSER last updated on 30/Sep/22

Let a,b,c be real numbers such that:  a+b+c=0. Prove that:  ((a^2 b^2 c^2 )/4)+(((ab+bc+ca)^3 )/(27))≤0

$${Let}\:{a},{b},{c}\:{be}\:{real}\:{numbers}\:{such}\:{that}: \\ $$$${a}+{b}+{c}=\mathrm{0}.\:{Prove}\:{that}: \\ $$$$\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} }{\mathrm{4}}+\frac{\left({ab}+{bc}+{ca}\right)^{\mathrm{3}} }{\mathrm{27}}\leqslant\mathrm{0} \\ $$

Answered by Frix last updated on 30/Sep/22

c=−a−b  ((a^2 b^2 c^2 )/4)+(((ab+bc+ca)^3 )/(27))=  =−(((a−b)^2 (a+2b)^2 (2a+b)^2 )/(108))≤0 obviously true

$${c}=−{a}−{b} \\ $$$$\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} }{\mathrm{4}}+\frac{\left({ab}+{bc}+{ca}\right)^{\mathrm{3}} }{\mathrm{27}}= \\ $$$$=−\frac{\left({a}−{b}\right)^{\mathrm{2}} \left({a}+\mathrm{2}{b}\right)^{\mathrm{2}} \left(\mathrm{2}{a}+{b}\right)^{\mathrm{2}} }{\mathrm{108}}\leqslant\mathrm{0}\:\mathrm{obviously}\:\mathrm{true} \\ $$

Commented by Frix last updated on 30/Sep/22

how I got this:  c=−a−b∧b=pa ⇒ c=−a(1+p)  ((a^2 b^2 c^2 )/4)+(((ab+bc+ca)^3 )/(27))=  =−((a^6 (p^6 +3p^5 −((3p^4 )/4)−((13p^3 )/2)−((3p^2 )/4)+3p+1))/(27))  factors of the polynome  p^6 +3p^5 −((3p^4 )/4)−((13p^3 )/2)−((3p^2 )/4)+3p+1  p=q−(1/2)  q^6 −((9q^4 )/2)+((81q^2 )/(16))  q^2 (q^2 −(9/4))^2   q^2 (q−(3/2))^2 (q+(3/2))^2   q=p+(1/2)  (p−1)^2 (p+2)^2 (p+(1/2))^2   p=(b/a)  (((a−b)^2 (a+2b)^2 (2a+b)^2 )/(4a^6 ))

$$\mathrm{how}\:\mathrm{I}\:\mathrm{got}\:\mathrm{this}: \\ $$$${c}=−{a}−{b}\wedge{b}={pa}\:\Rightarrow\:{c}=−{a}\left(\mathrm{1}+{p}\right) \\ $$$$\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} }{\mathrm{4}}+\frac{\left({ab}+{bc}+{ca}\right)^{\mathrm{3}} }{\mathrm{27}}= \\ $$$$=−\frac{{a}^{\mathrm{6}} \left({p}^{\mathrm{6}} +\mathrm{3}{p}^{\mathrm{5}} −\frac{\mathrm{3}{p}^{\mathrm{4}} }{\mathrm{4}}−\frac{\mathrm{13}{p}^{\mathrm{3}} }{\mathrm{2}}−\frac{\mathrm{3}{p}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{3}{p}+\mathrm{1}\right)}{\mathrm{27}} \\ $$$$\mathrm{factors}\:\mathrm{of}\:\mathrm{the}\:\mathrm{polynome} \\ $$$${p}^{\mathrm{6}} +\mathrm{3}{p}^{\mathrm{5}} −\frac{\mathrm{3}{p}^{\mathrm{4}} }{\mathrm{4}}−\frac{\mathrm{13}{p}^{\mathrm{3}} }{\mathrm{2}}−\frac{\mathrm{3}{p}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{3}{p}+\mathrm{1} \\ $$$${p}={q}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${q}^{\mathrm{6}} −\frac{\mathrm{9}{q}^{\mathrm{4}} }{\mathrm{2}}+\frac{\mathrm{81}{q}^{\mathrm{2}} }{\mathrm{16}} \\ $$$${q}^{\mathrm{2}} \left({q}^{\mathrm{2}} −\frac{\mathrm{9}}{\mathrm{4}}\right)^{\mathrm{2}} \\ $$$${q}^{\mathrm{2}} \left({q}−\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} \left({q}+\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${q}={p}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left({p}−\mathrm{1}\right)^{\mathrm{2}} \left({p}+\mathrm{2}\right)^{\mathrm{2}} \left({p}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${p}=\frac{{b}}{{a}} \\ $$$$\frac{\left({a}−{b}\right)^{\mathrm{2}} \left({a}+\mathrm{2}{b}\right)^{\mathrm{2}} \left(\mathrm{2}{a}+{b}\right)^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{6}} } \\ $$

Commented by LOSER last updated on 01/Oct/22

You′re too strong, sir!

$${You}'{re}\:{too}\:{strong},\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com