Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 177099 by mokys last updated on 30/Sep/22

Answered by TheHoneyCat last updated on 04/Oct/22

taking the log of your product    L=Σ_(n=0) ^∞ x^n (ln(1+x^(n+1) )−ln(1+x^n ))      =(1/x)Σ_(n=0) ^∞ x^(n+1) ln(1+x^(n+1) )−Σ_(n=0) ^∞ ln(1+x^n )      =(1/x)(Σ_(n=0) ^∞ x^n ln(1+x^n )−ln2)−Σ_(n=0) ^∞ ln(1+x^n )      =((−ln2)/x)+((1/x)−1)Σ_(n=0) ^∞ x^n ln(1+x^n )  so now we just need to take care of that series.  0<ln(1+x^n )<ln2  so  0>((1/x)−1)Σ…>((1−x)/x) (1/(x−1))ln2=((−ln2)/x)  so this limit is indeed wel defined.  so going back to the exponential the limit is in  [1/4, 1/2]  calling l the excat value of the series, your  result is 1/2^l     I gave up getting the exact result.  But it′s a classic one. You can find it in  calculus books.  I fear it has no explicit value thought.  If my memory is correct the result is  1/2^α  where alpha is a famous constant  that appears in the asympotic study of log  but my meroy is rarely correct.  ;−)

$$\mathrm{taking}\:\mathrm{the}\:\mathrm{log}\:\mathrm{of}\:\mathrm{your}\:\mathrm{product} \\ $$$$ \\ $$$$\mathrm{L}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} \left(\mathrm{ln}\left(\mathrm{1}+{x}^{{n}+\mathrm{1}} \right)−\mathrm{ln}\left(\mathrm{1}+{x}^{{n}} \right)\right) \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{{x}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}+\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+{x}^{{n}+\mathrm{1}} \right)−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{ln}\left(\mathrm{1}+{x}^{{n}} \right) \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{{x}}\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} \mathrm{ln}\left(\mathrm{1}+{x}^{{n}} \right)−\mathrm{ln2}\right)−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{ln}\left(\mathrm{1}+{x}^{{n}} \right) \\ $$$$\:\:\:\:=\frac{−\mathrm{ln2}}{{x}}+\left(\frac{\mathrm{1}}{{x}}−\mathrm{1}\right)\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} \mathrm{ln}\left(\mathrm{1}+{x}^{{n}} \right) \\ $$$$\mathrm{so}\:\mathrm{now}\:\mathrm{we}\:\mathrm{just}\:\mathrm{need}\:\mathrm{to}\:\mathrm{take}\:\mathrm{care}\:\mathrm{of}\:\mathrm{that}\:\mathrm{series}. \\ $$$$\mathrm{0}<\mathrm{ln}\left(\mathrm{1}+{x}^{{n}} \right)<\mathrm{ln2} \\ $$$$\mathrm{so} \\ $$$$\mathrm{0}>\left(\frac{\mathrm{1}}{{x}}−\mathrm{1}\right)\Sigma\ldots>\frac{\mathrm{1}−{x}}{{x}}\:\frac{\mathrm{1}}{{x}−\mathrm{1}}\mathrm{ln2}=\frac{−\mathrm{ln2}}{{x}} \\ $$$$\mathrm{so}\:\mathrm{this}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{indeed}\:\mathrm{wel}\:\mathrm{defined}. \\ $$$$\mathrm{so}\:\mathrm{going}\:\mathrm{back}\:\mathrm{to}\:\mathrm{the}\:\mathrm{exponential}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{in} \\ $$$$\left[\mathrm{1}/\mathrm{4},\:\mathrm{1}/\mathrm{2}\right] \\ $$$$\mathrm{calling}\:{l}\:\mathrm{the}\:\mathrm{excat}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series},\:\mathrm{your} \\ $$$$\mathrm{result}\:\mathrm{is}\:\mathrm{1}/\mathrm{2}^{{l}} \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{gave}\:\mathrm{up}\:\mathrm{getting}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{result}. \\ $$$$\mathrm{But}\:\mathrm{it}'\mathrm{s}\:\mathrm{a}\:\mathrm{classic}\:\mathrm{one}.\:\mathrm{You}\:\mathrm{can}\:\mathrm{find}\:\mathrm{it}\:\mathrm{in} \\ $$$$\mathrm{calculus}\:\mathrm{books}. \\ $$$$\mathrm{I}\:\mathrm{fear}\:\mathrm{it}\:\mathrm{has}\:\mathrm{no}\:\mathrm{explicit}\:\mathrm{value}\:\mathrm{thought}. \\ $$$$\mathrm{If}\:\mathrm{my}\:\mathrm{memory}\:\mathrm{is}\:\mathrm{correct}\:\mathrm{the}\:\mathrm{result}\:\mathrm{is} \\ $$$$\mathrm{1}/\mathrm{2}^{\alpha} \:\mathrm{where}\:\mathrm{alpha}\:\mathrm{is}\:\mathrm{a}\:\mathrm{famous}\:\mathrm{constant} \\ $$$$\mathrm{that}\:\mathrm{appears}\:\mathrm{in}\:\mathrm{the}\:\mathrm{asympotic}\:\mathrm{study}\:\mathrm{of}\:\mathrm{log} \\ $$$$\mathrm{but}\:\mathrm{my}\:\mathrm{meroy}\:\mathrm{is}\:\mathrm{rarely}\:\mathrm{correct}. \\ $$$$\left.;−\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com