Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 177296 by peter frank last updated on 03/Oct/22

  Evaluate   ∫_0 ^π (x/(a^2 cos^2 x+b^2 sin^2 x))dx

Evaluate0πxa2cos2x+b2sin2xdx

Commented by peter frank last updated on 03/Oct/22

ans      (π^2 /(2ab))

ansπ22ab

Answered by Ar Brandon last updated on 03/Oct/22

I=∫_0 ^π (x/(a^2 cos^2 x+b^2 sin^2 x))dx=∫_0 ^π ((π−x)/(a^2 cos^2 x+b^2 sin^2 x))dx     =(π/2)∫_0 ^π (1/(a^2 cos^2 x+b^2 sin^2 x))dx=(π/2)∫_0 ^π ((sec^2 x)/(a^2 +b^2 tan^2 x))dx     =π∫_0 ^(π/2) ((d(tanx))/(a^2 +b^2 tan^2 x))=(π/(ab))[arctan(((btanx)/a))]_0 ^(π/2) =(π^2 /(2ab))

I=0πxa2cos2x+b2sin2xdx=0ππxa2cos2x+b2sin2xdx=π20π1a2cos2x+b2sin2xdx=π20πsec2xa2+b2tan2xdx=π0π2d(tanx)a2+b2tan2x=πab[arctan(btanxa)]0π2=π22ab

Commented by peter frank last updated on 03/Oct/22

thank you

thankyou

Answered by BaliramKumar last updated on 03/Oct/22

I = ∫_0 ^π (x/(a^2 cos^2 x+b^2 sin^2 x))dx   ..................[i]  I = ∫_0 ^π (((π−x))/(a^2 cos^2 (π−x)+b^2 sin^2 (π−x)))dx  I = ∫_0 ^π ((π−x)/(a^2 cos^2 x+b^2 sin^2 x))dx   I = ∫_0 ^π (π/(a^2 cos^2 x+b^2 sin^2 x))dx− ∫_0 ^π (x/(a^2 cos^2 x+b^2 sin^2 x))dx   I = ∫_0 ^π (π/(a^2 cos^2 x+b^2 sin^2 x))dx− I   2I = π∫_0 ^π (1/(a^2 cos^2 x+b^2 sin^2 x))dx  I = (π/2)∫_0 ^π ((sec^2 x)/(a^2 +b^2 tan^2 x))dx  I = (π/2)∫_0 ^π ((sec^2 (π−x))/(a^2 +b^2 tan^2 (π−x)))dx  I = (π/2)∙2∫_0 ^(π/2) ((sec^2 x)/(a^2 +b^2 tan^2 x))dx  I = π∫_0 ^(π/2) ((sec^2 x)/(a^2  + (btanx)^2 ))dx  let        b∙tan(x) = y              when  x=0  then y=0               sec^2 x∙dx = (dy/b)             when  x=(π/2)   then   y=∞  I = (π/b)∫_0 ^∞ (1/(a^2 +y^2 ))dy  I = (π/b)∙(1/a)[tan^(−1) ((y/a))]_0 ^∞   I = (π/(ab))[(π/2)−0]  I = (π^2 /(2ab))

I=0πxa2cos2x+b2sin2xdx..................[i]I=0π(πx)a2cos2(πx)+b2sin2(πx)dxI=0ππxa2cos2x+b2sin2xdxI=0ππa2cos2x+b2sin2xdx0πxa2cos2x+b2sin2xdxI=0ππa2cos2x+b2sin2xdxI2I=π0π1a2cos2x+b2sin2xdxI=π20πsec2xa2+b2tan2xdxI=π20πsec2(πx)a2+b2tan2(πx)dxI=π220π2sec2xa2+b2tan2xdxI=π0π2sec2xa2+(btanx)2dxletbtan(x)=ywhenx=0theny=0sec2xdx=dybwhenx=π2theny=I=πb01a2+y2dyI=πb1a[tan1(ya)]0I=πab[π20]I=π22ab

Commented by peter frank last updated on 03/Oct/22

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com