All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 177298 by peter frank last updated on 03/Oct/22
Provethat∫0π2sin2x(sinx+cosx)dx=12log(2+1)
Answered by Ar Brandon last updated on 11/Oct/22
I=∫0π2sin2xsinx+cosxdx...eqn(i)I=∫0π2cos2xsinx+cosxdx...eqn(ii)[lettingt=π2−x]eqn(i)+eqn(ii)⇒2I=∫0π2sin2x+cos2xsinx+cosxdx=∫0π21sinx+cosxdxI=12∫0π21sinx+cosxdx=12∫0112t1+t2+1−t21+t2⋅21+t2dt=∫0111+2t−t2dt=∫01dt2−(t−1)2=12[argth(t−12)]01=122[ln∣t+2−1t−2−1∣]01=122ln∣2+12−1∣=122ln(2+1)2=12ln(2+1)
Commented by peter frank last updated on 03/Oct/22
thankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com