Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 177298 by peter frank last updated on 03/Oct/22

Prove that  ∫_0 ^(π/2) ((sin^2 x)/((sin x+cos x)))dx=(1/( (√2)))log ((√2)+1)

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}{\left(\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)}\mathrm{dx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{log}\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right) \\ $$

Answered by Ar Brandon last updated on 11/Oct/22

I=∫_0 ^(π/2) ((sin^2 x)/(sinx+cosx))dx ...eqn(i)  I=∫_0 ^(π/2) ((cos^2 x)/(sinx+cosx))dx   ...eqn(ii) [letting t=(π/2)−x]  eqn(i)+eqn(ii) ⇒  2I=∫_0 ^(π/2) ((sin^2 x+cos^2 x)/(sinx+cosx))dx=∫_0 ^(π/2) (1/(sinx+cosx))dx  I=(1/2)∫_0 ^(π/2) (1/(sinx+cosx))dx=(1/2)∫_0 ^1 (1/(((2t)/(1+t^2 ))+((1−t^2 )/(1+t^2 ))))∙(2/(1+t^2 ))dt     =∫_0 ^1 (1/(1+2t−t^2 ))dt=∫_0 ^1 (dt/(2−(t−1)^2 ))=(1/( (√2)))[argth(((t−1)/( (√2))))]_0 ^1      =(1/(2(√2)))[ln∣((t+(√2)−1)/(t−(√2)−1))∣]_0 ^1 =(1/(2(√2)))ln∣(((√2)+1)/( (√2)−1))∣=(1/(2(√2)))ln((√2)+1)^2 =(1/( (√2)))ln((√2)+1)

$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}^{\mathrm{2}} {x}}{\mathrm{sin}{x}+\mathrm{cos}{x}}{dx}\:...\mathrm{eqn}\left({i}\right) \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}^{\mathrm{2}} {x}}{\mathrm{sin}{x}+\mathrm{cos}{x}}{dx}\:\:\:...\mathrm{eqn}\left({ii}\right)\:\left[\mathrm{letting}\:{t}=\frac{\pi}{\mathrm{2}}−{x}\right] \\ $$$$\mathrm{eqn}\left({i}\right)+\mathrm{eqn}\left({ii}\right)\:\Rightarrow \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}^{\mathrm{2}} {x}+\mathrm{cos}^{\mathrm{2}} {x}}{\mathrm{sin}{x}+\mathrm{cos}{x}}{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\mathrm{sin}{x}+\mathrm{cos}{x}}{dx} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\mathrm{sin}{x}+\mathrm{cos}{x}}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\centerdot\frac{\mathrm{2}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}{t}−{t}^{\mathrm{2}} }{dt}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{\mathrm{2}−\left({t}−\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left[\mathrm{argth}\left(\frac{{t}−\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left[\mathrm{ln}\mid\frac{{t}+\sqrt{\mathrm{2}}−\mathrm{1}}{{t}−\sqrt{\mathrm{2}}−\mathrm{1}}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\mathrm{ln}\mid\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\:\sqrt{\mathrm{2}}−\mathrm{1}}\mid=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\mathrm{ln}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{ln}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right) \\ $$

Commented by peter frank last updated on 03/Oct/22

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com