Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 177298 by peter frank last updated on 03/Oct/22

Prove that  ∫_0 ^(π/2) ((sin^2 x)/((sin x+cos x)))dx=(1/( (√2)))log ((√2)+1)

Provethat0π2sin2x(sinx+cosx)dx=12log(2+1)

Answered by Ar Brandon last updated on 11/Oct/22

I=∫_0 ^(π/2) ((sin^2 x)/(sinx+cosx))dx ...eqn(i)  I=∫_0 ^(π/2) ((cos^2 x)/(sinx+cosx))dx   ...eqn(ii) [letting t=(π/2)−x]  eqn(i)+eqn(ii) ⇒  2I=∫_0 ^(π/2) ((sin^2 x+cos^2 x)/(sinx+cosx))dx=∫_0 ^(π/2) (1/(sinx+cosx))dx  I=(1/2)∫_0 ^(π/2) (1/(sinx+cosx))dx=(1/2)∫_0 ^1 (1/(((2t)/(1+t^2 ))+((1−t^2 )/(1+t^2 ))))∙(2/(1+t^2 ))dt     =∫_0 ^1 (1/(1+2t−t^2 ))dt=∫_0 ^1 (dt/(2−(t−1)^2 ))=(1/( (√2)))[argth(((t−1)/( (√2))))]_0 ^1      =(1/(2(√2)))[ln∣((t+(√2)−1)/(t−(√2)−1))∣]_0 ^1 =(1/(2(√2)))ln∣(((√2)+1)/( (√2)−1))∣=(1/(2(√2)))ln((√2)+1)^2 =(1/( (√2)))ln((√2)+1)

I=0π2sin2xsinx+cosxdx...eqn(i)I=0π2cos2xsinx+cosxdx...eqn(ii)[lettingt=π2x]eqn(i)+eqn(ii)2I=0π2sin2x+cos2xsinx+cosxdx=0π21sinx+cosxdxI=120π21sinx+cosxdx=120112t1+t2+1t21+t221+t2dt=0111+2tt2dt=01dt2(t1)2=12[argth(t12)]01=122[lnt+21t21]01=122ln2+121∣=122ln(2+1)2=12ln(2+1)

Commented by peter frank last updated on 03/Oct/22

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com