Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 177332 by mr W last updated on 03/Oct/22

Commented by mr W last updated on 04/Oct/22

the question is to find the maximum  value of x such that the rod doesn′t  slip.  [Q90331]

thequestionistofindthemaximumvalueofxsuchthattheroddoesntslip.[Q90331]

Answered by mr W last updated on 04/Oct/22

Commented by mr W last updated on 04/Oct/22

Commented by mr W last updated on 04/Oct/22

let ξ=(x/l), λ=(a/l), η=(h/l)  c=(√(a^2 +x^2 ))=l(√(λ^2 +ξ^2 ))  sin φ=(a/c)=(λ/( (√(λ^2 +ξ^2 ))))    tan θ_1 ≤μ  ϕ=(π/2)−θ_2   tan ϕ=(1/(tan θ_2 ))≥(1/μ)  ⇒cos ϕ≤(μ/( (√(1+μ^2 ))))  tan β=(c/h)=((√(λ^2 +ξ^2 ))/( η))  sin δ×sin φ=cos ϕ  ⇒sin δ=((cos ϕ)/(sin φ))≤((μ(√(λ^2 +ξ^2 )))/( λ(√(1+μ^2 ))))  ⇒tan δ≤((μ(√(λ^2 +ξ^2 )))/( (√(λ^2 −ξ^2 ))))   (?)    ((CD)/(CB))=((sin (β+δ))/(sin δ))=((sin β)/(tan δ))+cos β  ((CD)/(AC))=((sin (β−θ_1 ))/(sin θ_1 ))=((sin β)/(tan θ_1 ))−cos β  ((((sin β)/(tan θ_1 ))−cos β)/(((sin β)/(tan δ))+cos β))=((CB)/(AC))  ((CB)/(AC))=(((√(c^2 +h^2 ))−(l/2))/(l/2))=2(√(λ^2 +ξ^2 +η^2 ))−1  ⇒ (((1/(tan θ_1 ))−(1/(tan β)))/((1/(tan δ))+(1/(tan β))))=2(√(λ^2 +ξ^2 +η^2 ))−1  ((μ−(η/( (√(λ^2 +ξ^2 )))))/(((√(λ^2 −ξ^2 ))/(μ(√(λ^2 +ξ^2 ))))+(η/( (√(λ^2 +ξ^2 ))))))≤2(√(λ^2 +ξ^2 +η^2 ))−1  ⇒((μ(√(λ^2 +ξ^2 ))−η)/( ((√(λ^2 −ξ^2 ))/μ)+η))≤2(√(λ^2 +ξ^2 +η^2 ))−1    example: μ=1.5, η=0.3

letξ=xl,λ=al,η=hlc=a2+x2=lλ2+ξ2sinϕ=ac=λλ2+ξ2tanθ1μφ=π2θ2tanφ=1tanθ21μcosφμ1+μ2tanβ=ch=λ2+ξ2ηsinδ×sinϕ=cosφsinδ=cosφsinϕμλ2+ξ2λ1+μ2tanδμλ2+ξ2λ2ξ2(?)CDCB=sin(β+δ)sinδ=sinβtanδ+cosβCDAC=sin(βθ1)sinθ1=sinβtanθ1cosβsinβtanθ1cosβsinβtanδ+cosβ=CBACCBAC=c2+h2l2l2=2λ2+ξ2+η211tanθ11tanβ1tanδ+1tanβ=2λ2+ξ2+η21μηλ2+ξ2λ2ξ2μλ2+ξ2+ηλ2+ξ22λ2+ξ2+η21μλ2+ξ2ηλ2ξ2μ+η2λ2+ξ2+η21example:μ=1.5,η=0.3

Commented by mr W last updated on 04/Oct/22

Commented by mr W last updated on 04/Oct/22

since we don′t have a contact surface  between the rod and the step edge in   this case, i′m not sure if my solution  is correct. comments are welcome.

sincewedonthaveacontactsurfacebetweentherodandthestepedgeinthiscase,imnotsureifmysolutioniscorrect.commentsarewelcome.

Commented by Tawa11 last updated on 04/Oct/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com