Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 17743 by b.e.h.i.8.3.417@gmail.com last updated on 10/Jul/17

Answered by mrW1 last updated on 10/Jul/17

let k=((√2)/2) l  A(0,k,0)  B(k,0,0)  C(0,−k,0)  D(−k,0,0)  M(p,q,r)  ⇒a^2 =p^2 +(q−k)^2 +r^2    ...(i)  ⇒b^2 =(p−k)^2 +q^2 +r^2    ...(ii)  ⇒c^2 =p^2 +(q+k)^2 +r^2    ...(iii)  ⇒d^2 =(p+k)^2 +q^2 +r^2    ...(iv)    a^2 +c^2 =2p^2 +2q^2 +2r^2 +2k^2 =2(p^2 +q^2 +r^2 +k^2 )  b^2 +d^2 =2p^2 +2q^2 +2r^2 +2k^2 =2(p^2 +q^2 +r^2 +k^2 )  ⇒a^2 +c^2 =b^2 +d^2     (iii)−(i):  c^2 −a^2 =4qk  ⇒q=((c^2 −a^2 )/(4k))  (iv)−(ii):  d^2 −b^2 =4pk  ⇒p=((d^2 −b^2 )/(4k))    from (i):  r^2 =−[p^2 +(q−k)^2 −a^2 ]  =−[(((d^2 −b^2 )^2 )/(16k^2 ))+(((c^2 −a^2 )/(4k))−k)^2 −a^2 ]  =−[(((d^2 −b^2 )^2 +(c^2 −a^2 −4k^2 )^2 −16a^2 k^2 )/(16k^2 ))]  =−[((d^4 +b^4 −2d^2 b^2 +c^4 +a^4 +16k^4 −2a^2 c^2 −8k^2 c^2 +8k^2 a^2 −16a^2 k^2 )/(16k^2 ))]  =−[((a^4 +b^4 +c^4 +d^4 −2(a^2 c^2 +d^2 b^2 )+16k^4 −8k^2 (a^2 +c^2 ))/(16k^2 ))]  =−[(((a^2 −c^2 )^2 +(b^2 −d^2 )^2 −8k^2 (a^2 +c^2 )+16k^4 )/(16k^2 ))]  =−[(((a^2 −c^2 )^2 +(b^2 −d^2 )^2 −8k^2 (a^2 +c^2 −2k^2 ))/(16k^2 ))]  =−[(((a^2 −c^2 )^2 +(b^2 −d^2 )^2 −4 l^2 (a^2 +c^2 −l^2 ))/(8 l^2 ))]  ⇒h=∣r∣=((√(4 l^2 (a^2 +c^2 −l^2 )−(a^2 −c^2 )^2 −(b^2 −d^2 )^2 ))/(2(√2) l))

letk=22lA(0,k,0)B(k,0,0)C(0,k,0)D(k,0,0)M(p,q,r)a2=p2+(qk)2+r2...(i)b2=(pk)2+q2+r2...(ii)c2=p2+(q+k)2+r2...(iii)d2=(p+k)2+q2+r2...(iv)a2+c2=2p2+2q2+2r2+2k2=2(p2+q2+r2+k2)b2+d2=2p2+2q2+2r2+2k2=2(p2+q2+r2+k2)a2+c2=b2+d2(iii)(i):c2a2=4qkq=c2a24k(iv)(ii):d2b2=4pkp=d2b24kfrom(i):r2=[p2+(qk)2a2]=[(d2b2)216k2+(c2a24kk)2a2]=[(d2b2)2+(c2a24k2)216a2k216k2]=[d4+b42d2b2+c4+a4+16k42a2c28k2c2+8k2a216a2k216k2]=[a4+b4+c4+d42(a2c2+d2b2)+16k48k2(a2+c2)16k2]=[(a2c2)2+(b2d2)28k2(a2+c2)+16k416k2]=[(a2c2)2+(b2d2)28k2(a2+c22k2)16k2]=[(a2c2)2+(b2d2)24l2(a2+c2l2)8l2]h=∣r∣=4l2(a2+c2l2)(a2c2)2(b2d2)222l

Commented by b.e.h.i.8.3.417@gmail.com last updated on 10/Jul/17

thank you dear mrW1.  first and always the best.

thankyoudearmrW1.firstandalwaysthebest.

Answered by ajfour last updated on 10/Jul/17

Commented by ajfour last updated on 10/Jul/17

AP^2 =a^2 =h^2 +(x−k)^2 +y^2   BP^2 =b^2 =h^2 +x^2 +(y−k)^2                CP^2 =c^2 =h^2 +(x+k)^2 +y^2   DP^2 =d^2 =h^2 +x^2 +(y+k)^2    a^2 +c^2 =b^2 +d^2  =2(h^2 +x^2 +y^2 +k^2 )                                                      .....(i)    c^2 −a^2 =4kx  ;     d^2 −b^2 =4ky  ⇒16k^2 (x^2 +y^2 )=(c^2 −a^2 )^2 +(d^2 −b^2 )^2    a^2 +b^2 +c^2 +d^2 = 4(h^2 +x^2 +y^2 +k^2 )  so,  16k^2 h^2 =4k^2 (a^2 +b^2 +c^2 +d^2 )                         −16k^2 (x^2 +y^2 +k^2 )   16k^2 h^2 =4k^2 (a^2 +b^2 +c^2 +d^2 )         −[(c^2 −a^2 )^2 +(d^2 −b^2 )^2 ]−16k^4   h=(√(((a^2 +b^2 +c^2 +d^2 )/4)−(((c^2 −a^2 )+(d^2 −b^2 )^2 )/(16k^2 ))−k^2 ))            with   2k^2 =l^2  .

AP2=a2=h2+(xk)2+y2BP2=b2=h2+x2+(yk)2CP2=c2=h2+(x+k)2+y2DP2=d2=h2+x2+(y+k)2a2+c2=b2+d2=2(h2+x2+y2+k2).....(i)c2a2=4kx;d2b2=4ky16k2(x2+y2)=(c2a2)2+(d2b2)2a2+b2+c2+d2=4(h2+x2+y2+k2)so,16k2h2=4k2(a2+b2+c2+d2)16k2(x2+y2+k2)16k2h2=4k2(a2+b2+c2+d2)[(c2a2)2+(d2b2)2]16k4h=a2+b2+c2+d24(c2a2)+(d2b2)216k2k2with2k2=l2.

Commented by b.e.h.i.8.3.417@gmail.com last updated on 10/Jul/17

thank you dear mr Ajfour.  your answers are spicial and different  any time.

thankyoudearmrAjfour.youranswersarespicialanddifferentanytime.

Commented by ajfour last updated on 10/Jul/17

but mrW1 Sir′s answer dont agree  with my answer.please find the error.

butmrW1Sirsanswerdontagreewithmyanswer.pleasefindtheerror.

Commented by b.e.h.i.8.3.417@gmail.com last updated on 10/Jul/17

h^2 =((a^2 +b^2 +c^2 +d^2 )/4)−(((a^2 −c^2 )^2 +(b^2 −d^2 )^2 )/(8l^2 ))−(l^2 /2)

h2=a2+b2+c2+d24(a2c2)2+(b2d2)28l2l22

Commented by mrW1 last updated on 10/Jul/17

I had a mistake with “−”sign. But  the result is the same even when we  used different expressions, since  a^2 +c^2 =b^2 +d^2 .

Ihadamistakewithsign.Buttheresultisthesameevenwhenweuseddifferentexpressions,sincea2+c2=b2+d2.

Commented by b.e.h.i.8.3.417@gmail.com last updated on 10/Jul/17

thanks for your care and correction.

thanksforyourcareandcorrection.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com