Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 177432 by HeferH last updated on 05/Oct/22

Commented by Ar Brandon last updated on 05/Oct/22

30° ?

$$\mathrm{30}°\:? \\ $$

Commented by HeferH last updated on 05/Oct/22

I′m not sure

$${I}'{m}\:{not}\:{sure} \\ $$$$\: \\ $$

Commented by Ar Brandon last updated on 05/Oct/22

Commented by HeferH last updated on 05/Oct/22

Commented by HeferH last updated on 05/Oct/22

 x + α  + 140°=180   x = α + 20°   x = 30°

$$\:{x}\:+\:\alpha\:\:+\:\mathrm{140}°=\mathrm{180} \\ $$$$\:{x}\:=\:\alpha\:+\:\mathrm{20}° \\ $$$$\:{x}\:=\:\mathrm{30}° \\ $$$$\: \\ $$

Commented by Tawa11 last updated on 05/Oct/22

Great sirs

$$\mathrm{Great}\:\mathrm{sirs} \\ $$

Commented by mr W last updated on 05/Oct/22

how can you say α=10°? where is  AE=CD?

$${how}\:{can}\:{you}\:{say}\:\alpha=\mathrm{10}°?\:{where}\:{is} \\ $$$${AE}={CD}? \\ $$

Commented by HeferH last updated on 05/Oct/22

 It′s one of those magic lines

$$\:{It}'{s}\:{one}\:{of}\:{those}\:{magic}\:{lines}\: \\ $$$$\: \\ $$

Commented by mr W last updated on 05/Oct/22

what′s the proof for its correctness?

$${what}'{s}\:{the}\:{proof}\:{for}\:{its}\:{correctness}? \\ $$

Commented by HeferH last updated on 05/Oct/22

 I know it′s an insecure way, but I see so   many teachers draw certain lines that   at first are valid but then I think “That′s   not possible, is it?”, in this case I′m   trusting that by forming 140° with the    drawn segment the end terminates at   a point F on AC such that AF = FD = DC      Probably I had luck

$$\:{I}\:{know}\:{it}'{s}\:{an}\:{insecure}\:{way},\:{but}\:{I}\:{see}\:{so} \\ $$$$\:{many}\:{teachers}\:{draw}\:{certain}\:{lines}\:{that} \\ $$$$\:{at}\:{first}\:{are}\:{valid}\:{but}\:{then}\:{I}\:{think}\:``{That}'{s} \\ $$$$\:{not}\:{possible},\:{is}\:{it}?'',\:{in}\:{this}\:{case}\:{I}'{m} \\ $$$$\:{trusting}\:{that}\:{by}\:{forming}\:\mathrm{140}°\:{with}\:{the}\: \\ $$$$\:{drawn}\:{segment}\:{the}\:{end}\:{terminates}\:{at} \\ $$$$\:{a}\:{point}\:{F}\:{on}\:{AC}\:{such}\:{that}\:{AF}\:=\:{FD}\:=\:{DC} \\ $$$$\: \\ $$$$\:{Probably}\:{I}\:{had}\:{luck} \\ $$

Answered by Ar Brandon last updated on 05/Oct/22

(i) ((EB)/(sin40°))=(h/(sin80°)) ⇒EB=h((sin40°)/(sin80°))=(h/(2cos40°))  (ii) x+EB=h ⇒x=(1−(1/(2cos40°)))h=(((2cos40°−1)/(2cos40°)))h  (iii) ((CE)/(sin60°))=(h/(sin80°)) ⇒CE=h((sin60°)/(sin80°))  (iv) x+DE=CE ⇒DE=CE−x=(((sin60°)/(sin80°))−((2cos40°−1)/(2cos40°)))h  Applying cosine rule in △ADE  AD=(√(x^2 +DE^2 −2x.DE.cos100°))          =h(√((((2cos40°−1)/(2cos40°)))^2 +(((sin60°)/(sin80°))−((2cos40°−1)/(2cos40°)))^2 −2(((2cos40°−1)/(2cos40°)))(((sin60°)/(sin80°))−((2cos40°−1)/(2cos40°)))cos100°))          ≈h(√(0,347296355^2 +0,532088886^2 −2(0,347296355)(0,532088886)cos100°))          ≈h(√(0,467911113))=0,684040286h  Applying Sine rule we have  ((sinϑ)/x)=((sin100°)/(AD)) ⇒ϑ=sin^(−1) ((x/(AD))sin100°)=sin^(−1) ((h/(AD))∙((2cos40°−1)/(2cos40°))∙sin100°)  ϑ=sin^(−1) ((((2cos40°−1)(sin100°))/( (0,684040286)(2cos40°))))=30°

$$\left({i}\right)\:\frac{\mathrm{EB}}{\mathrm{sin40}°}=\frac{{h}}{\mathrm{sin80}°}\:\Rightarrow\mathrm{EB}={h}\frac{\mathrm{sin40}°}{\mathrm{sin80}°}=\frac{{h}}{\mathrm{2cos40}°} \\ $$$$\left({ii}\right)\:{x}+\mathrm{EB}={h}\:\Rightarrow{x}=\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2cos40}°}\right){h}=\left(\frac{\mathrm{2cos40}°−\mathrm{1}}{\mathrm{2cos40}°}\right){h} \\ $$$$\left({iii}\right)\:\frac{\mathrm{CE}}{\mathrm{sin60}°}=\frac{{h}}{\mathrm{sin80}°}\:\Rightarrow\mathrm{CE}={h}\frac{\mathrm{sin60}°}{\mathrm{sin80}°} \\ $$$$\left({i}\mathrm{v}\right)\:{x}+\mathrm{DE}=\mathrm{CE}\:\Rightarrow\mathrm{DE}=\mathrm{CE}−{x}=\left(\frac{\mathrm{sin60}°}{\mathrm{sin80}°}−\frac{\mathrm{2cos40}°−\mathrm{1}}{\mathrm{2cos40}°}\right){h} \\ $$$$\mathrm{Applying}\:\mathrm{cosine}\:\mathrm{rule}\:\mathrm{in}\:\bigtriangleup\mathrm{ADE} \\ $$$$\mathrm{AD}=\sqrt{{x}^{\mathrm{2}} +\mathrm{DE}^{\mathrm{2}} −\mathrm{2}{x}.\mathrm{DE}.\mathrm{cos100}°} \\ $$$$\:\:\:\:\:\:\:\:={h}\sqrt{\left(\frac{\mathrm{2cos40}°−\mathrm{1}}{\mathrm{2cos40}°}\right)^{\mathrm{2}} +\left(\frac{\mathrm{sin60}°}{\mathrm{sin80}°}−\frac{\mathrm{2cos40}°−\mathrm{1}}{\mathrm{2cos40}°}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{\mathrm{2cos40}°−\mathrm{1}}{\mathrm{2cos40}°}\right)\left(\frac{\mathrm{sin60}°}{\mathrm{sin80}°}−\frac{\mathrm{2cos40}°−\mathrm{1}}{\mathrm{2cos40}°}\right)\mathrm{cos100}°} \\ $$$$\:\:\:\:\:\:\:\:\approx{h}\sqrt{\mathrm{0},\mathrm{347296355}^{\mathrm{2}} +\mathrm{0},\mathrm{532088886}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{0},\mathrm{347296355}\right)\left(\mathrm{0},\mathrm{532088886}\right)\mathrm{cos100}°} \\ $$$$\:\:\:\:\:\:\:\:\approx{h}\sqrt{\mathrm{0},\mathrm{467911113}}=\mathrm{0},\mathrm{684040286}{h} \\ $$$$\mathrm{Applying}\:\mathrm{Sine}\:\mathrm{rule}\:\mathrm{we}\:\mathrm{have} \\ $$$$\frac{\mathrm{sin}\vartheta}{{x}}=\frac{\mathrm{sin100}°}{\mathrm{AD}}\:\Rightarrow\vartheta=\mathrm{sin}^{−\mathrm{1}} \left(\frac{{x}}{\mathrm{AD}}\mathrm{sin100}°\right)=\mathrm{sin}^{−\mathrm{1}} \left(\frac{{h}}{\mathrm{AD}}\centerdot\frac{\mathrm{2cos40}°−\mathrm{1}}{\mathrm{2cos40}°}\centerdot\mathrm{sin100}°\right) \\ $$$$\vartheta=\mathrm{sin}^{−\mathrm{1}} \left(\frac{\left(\mathrm{2cos40}°−\mathrm{1}\right)\left(\mathrm{sin100}°\right)}{\:\left(\mathrm{0},\mathrm{684040286}\right)\left(\mathrm{2cos40}°\right)}\right)=\mathrm{30}° \\ $$

Answered by mr W last updated on 05/Oct/22

((AD)/(sin 100))=((AE)/(sin x))    ...(i)  ((sin 20)/(AD))=((sin (x−20))/(CD))   ...(ii)  (i)×(ii):  ((sin 20)/(sin 100))=((sin (x−20))/(sin x))  (1/(cos 10))=(1/(tan 20))−(1/(tan x))  tan x=(1/((1/(tan 20))−(1/(cos 10))))  ⇒x=tan^(−1) ((1/((1/(tan 20))−(1/(cos 10)))))=30°

$$\frac{{AD}}{\mathrm{sin}\:\mathrm{100}}=\frac{{AE}}{\mathrm{sin}\:{x}}\:\:\:\:...\left({i}\right) \\ $$$$\frac{\mathrm{sin}\:\mathrm{20}}{{AD}}=\frac{\mathrm{sin}\:\left({x}−\mathrm{20}\right)}{{CD}}\:\:\:...\left({ii}\right) \\ $$$$\left({i}\right)×\left({ii}\right): \\ $$$$\frac{\mathrm{sin}\:\mathrm{20}}{\mathrm{sin}\:\mathrm{100}}=\frac{\mathrm{sin}\:\left({x}−\mathrm{20}\right)}{\mathrm{sin}\:{x}} \\ $$$$\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{10}}=\frac{\mathrm{1}}{\mathrm{tan}\:\mathrm{20}}−\frac{\mathrm{1}}{\mathrm{tan}\:{x}} \\ $$$$\mathrm{tan}\:{x}=\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{tan}\:\mathrm{20}}−\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{10}}} \\ $$$$\Rightarrow{x}=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{tan}\:\mathrm{20}}−\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{10}}}\right)=\mathrm{30}° \\ $$

Commented by Ar Brandon last updated on 05/Oct/22

Nice Sir !

Terms of Service

Privacy Policy

Contact: info@tinkutara.com