Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 177446 by mr W last updated on 05/Oct/22

Commented by mr W last updated on 05/Oct/22

a rope with length L has uniform  mass. one end of the rope is fixed on  the top of a pole with heigth h above a  inclined plane (h<L). the other end  of the rope can be freely laid on the  inclined plane. the friction coefficient   between rope and inclined plane is μ.  find the maximum area of the   inclined plane which can be covered   by the rope.

aropewithlengthLhasuniformmass.oneendoftheropeisfixedonthetopofapolewithheigthhaboveainclinedplane(h<L).theotherendoftheropecanbefreelylaidontheinclinedplane.thefrictioncoefficientbetweenropeandinclinedplaneisμ.findthemaximumareaoftheinclinedplanewhichcanbecoveredbytherope.

Answered by mr W last updated on 06/Oct/22

Commented by mr W last updated on 06/Oct/22

due to symmetry we only need to look  at −(π/2)≤ϕ≤(π/2).   the cases ϕ=(π/2) and ϕ=−(π/2)   see Q170601.

duetosymmetryweonlyneedtolookatπ2φπ2.thecasesφ=π2andφ=π2seeQ170601.

Commented by mr W last updated on 06/Oct/22

Commented by mr W last updated on 07/Oct/22

say the length of rope part which lies  on the inclined plane is b.  the tension in the rope between the  hanging part and the part lying on  the inclined plane is T_1 .  μbρg cos θ sin α=bρg sin θ cos ϕ  ⇒sin α=((tan θ cos ϕ)/μ)  μbρg cos θ cos α=T_1 +bρg sin θ sin ϕ  ⇒(T_1 /(bρg))=μcos θ cos α−sin θ sin ϕ  ⇒(T_1 /(bρg))= (√(μ^2 cos^2  θ−sin^2  θ cos^2  ϕ))−sin θ sin ϕ  ⇒(T_1 /(bρg))= (√((μ^2 +1)cos^2  θ−1+sin^2  θ sin^2  ϕ))−sin θ sin ϕ

saythelengthofropepartwhichliesontheinclinedplaneisb.thetensionintheropebetweenthehangingpartandthepartlyingontheinclinedplaneisT1.μbρgcosθsinα=bρgsinθcosφsinα=tanθcosφμμbρgcosθcosα=T1+bρgsinθsinφT1bρg=μcosθcosαsinθsinφT1bρg=μ2cos2θsin2θcos2φsinθsinφT1bρg=(μ2+1)cos2θ1+sin2θsin2φsinθsinφ

Commented by mr W last updated on 07/Oct/22

let η=(h/L), ξ=(b/L)  sin φ=sin ϕ sin θ=λ, say  a=(T_0 /(ρg))=((T_1 cos φ)/(ρg))    =b cos φ( (√((1+μ^2 )cos^2  θ−1+λ^2 ))−λ)    =ξL(√(1−λ^2 ))((√((μ^2 +1)cos^2  θ−1+λ^2 ))−λ)  let δ= (√((μ^2 +1)cos^2  θ−1+λ^2 ))−λ  ⇒a=ξLδ (√(1−λ^2 ))    eqn. of catenary in xy−system:  y=a cosh (x/a)  y′=sinh (x/a)  s=a sinh (x/a)    at point D:  y′=sinh (d_1 /a)=tan φ  ⇒(d_1 /a)=sinh^(−1)  (tan φ)=sinh^(−1)  (λ/( (√(1−λ^2 ))))  h_2 =a cosh (d_1 /a)=a cosh (sinh^(−1)  (λ/( (√(1−λ^2 )))))       =a (√(1+((λ/( (√(1−λ^2 )))))^2 ))=(a/( (√(1−λ^2 ))))  s_1 =a tan φ=((aλ)/( (√(1−λ^2 ))))    at point B:  h_3 =a cosh (d_2 /a)  s_2 =a sinh (d_2 /a)  h_1 =h−h_3   (h_1 /a)=(h/a)−(h_3 /a)  h_1 +h_2 =(d_1 +d_2 )tan φ  ((h/a)−(h_3 /a)+(h_2 /a))((√(1−λ^2 ))/λ)=(d_1 /a)+(d_2 /a)  ((h/a)−cosh (d_2 /a)+ (1/( (√(1−λ^2 )))))((√(1−λ^2 ))/λ)=sinh^(−1)  (λ/( (√(1−λ^2 ))))+(d_2 /a)  ((h/a)−cosh (d_2 /a))((√(1−λ^2 ))/λ)+ (1/( λ))=sinh^(−1)  (λ/( (√(1−λ^2 ))))+(d_2 /a)  (d_2 /a)+((√(1−λ^2 ))/λ) cosh (d_2 /a)=(1/λ)(((h(√(1−λ^2 )))/a)+1)−sinh^(−1)  (λ/( (√(1−λ^2 ))))  ⇒ λ((d_2 /a))+(√(1−λ^2 )) cosh (d_2 /a)=(η/(ξδ))+1−λ sinh^(−1)  (λ/( (√(1−λ^2 ))))    ...(i)    s_1 +s_2 =L−b  (s_1 /a)+(s_2 /a)=((L−b)/a)  (λ/( (√(1−λ^2 ))))+sinh (d_2 /a)=((1−ξ)/(ξδ (√(1−λ^2 ))))  sinh (d_2 /a)=(1/( (√(1−λ^2 ))))(((1−ξ)/(ξδ))−λ)  ⇒(d_2 /a)=sinh^(−1) [ (1/( (√(1−λ^2 ))))(((1−ξ)/(ξδ))−λ)]    ...(ii)  insert (ii) into (i) we get an equation  for solving ξ.    r=AC=b+((d_1 +d_2 )/(cos φ))    =b+(a/(cos φ))((d_1 /a)+(d_2 /a))    =ξL+ξLδ{sinh^(−1)  (λ/( (√(1−λ^2 ))))+sinh^(−1) [(1/( (√(1−λ^2 ))))(((1−ξ)/( ξδ))−λ) ]}  ⇒ (r/L) =ξ+ξδ{sinh^(−1)  (λ/( (√(1−λ^2 ))))+sinh^(−1) [(1/( (√(1−λ^2 )))) (((1−ξ)/( ξδ))−λ) ]}    examples:  μ=1.5, θ=30°, η=(h/L)=(3/5)=0.6,  ϕ=0° ⇒ξ=(b/L)=0.1975, (r/L)=0.6556  ϕ=30° ⇒ξ=(b/L)=0.2556, (r/L)=0.7583  ϕ=60° ⇒ξ=(b/L)=0.3092, (r/L)=0.8551  ϕ=90° ⇒ξ=(b/L)=0.3320^(∗)) , (r/L)=0.8975    ∗) the same result as in Q170601

letη=hL,ξ=bLsinϕ=sinφsinθ=λ,saya=T0ρg=T1cosϕρg=bcosϕ((1+μ2)cos2θ1+λ2λ)=ξL1λ2((μ2+1)cos2θ1+λ2λ)letδ=(μ2+1)cos2θ1+λ2λa=ξLδ1λ2eqn.ofcatenaryinxysystem:y=acoshxay=sinhxas=asinhxaatpointD:y=sinhd1a=tanϕd1a=sinh1(tanϕ)=sinh1λ1λ2h2=acoshd1a=acosh(sinh1λ1λ2)=a1+(λ1λ2)2=a1λ2s1=atanϕ=aλ1λ2atpointB:h3=acoshd2as2=asinhd2ah1=hh3h1a=hah3ah1+h2=(d1+d2)tanϕ(hah3a+h2a)1λ2λ=d1a+d2a(hacoshd2a+11λ2)1λ2λ=sinh1λ1λ2+d2a(hacoshd2a)1λ2λ+1λ=sinh1λ1λ2+d2ad2a+1λ2λcoshd2a=1λ(h1λ2a+1)sinh1λ1λ2λ(d2a)+1λ2coshd2a=ηξδ+1λsinh1λ1λ2...(i)s1+s2=Lbs1a+s2a=Lbaλ1λ2+sinhd2a=1ξξδ1λ2sinhd2a=11λ2(1ξξδλ)d2a=sinh1[11λ2(1ξξδλ)]...(ii)insert(ii)into(i)wegetanequationforsolvingξ.r=AC=b+d1+d2cosϕ=b+acosϕ(d1a+d2a)=ξL+ξLδ{sinh1λ1λ2+sinh1[11λ2(1ξξδλ)]}rL=ξ+ξδ{sinh1λ1λ2+sinh1[11λ2(1ξξδλ)]}examples:μ=1.5,θ=30°,η=hL=35=0.6,φ=0°ξ=bL=0.1975,rL=0.6556φ=30°ξ=bL=0.2556,rL=0.7583φ=60°ξ=bL=0.3092,rL=0.8551φ=90°ξ=bL=0.3320),rL=0.8975)thesameresultasinQ170601

Commented by mr W last updated on 06/Oct/22

Commented by mr W last updated on 07/Oct/22

Commented by mr W last updated on 07/Oct/22

Commented by mr W last updated on 07/Oct/22

μbρg cos θ sin α=bρg sin θ cos ϕ  μ cos θ sin α=sin θ cos ϕ  ⇒sin α=((tan θ cos ϕ)/μ)  T_1 =μbρg cos θ cos α+bρg sin θ sin ϕ  (T_1 /(bρg))=μ cos θ (√(1−(((tan θ cos ϕ)/μ))^2 ))+sin θ sin ϕ  ⇒(T_1 /(bρg))= (√((μ^2 +1) cos^2  θ−1+sin^2  θ sin^2  ϕ))+sin θ sin ϕ

μbρgcosθsinα=bρgsinθcosφμcosθsinα=sinθcosφsinα=tanθcosφμT1=μbρgcosθcosα+bρgsinθsinφT1bρg=μcosθ1(tanθcosφμ)2+sinθsinφT1bρg=(μ2+1)cos2θ1+sin2θsin2φ+sinθsinφ

Commented by mr W last updated on 07/Oct/22

Commented by mr W last updated on 07/Oct/22

let η=(h/L), ξ=(b/L)  sin φ=sin ϕ sin θ=λ, say  a=(T_0 /(ρg))=((T_1 cos φ)/(ρg))    =b cos φ( (√((1+μ^2 )cos^2  θ−1+λ^2 ))+λ)    =ξL(√(1−λ^2 ))((√((μ^2 +1)cos^2  θ−1+λ^2 ))+λ)  let δ= (√((μ^2 +1)cos^2  θ−1+λ^2 ))+λ  ⇒a=ξLδ (√(1−λ^2 ))    eqn. of catenary in xy−system:  y=a cosh (x/a)  y′=sinh (x/a)  s=a sinh (x/a)    at point D:  y′=sinh (d_1 /a)=tan φ  ⇒(d_1 /a)=sinh^(−1)  (tan φ)=sinh^(−1)  (λ/( (√(1−λ^2 ))))  h_1 =a cosh (d_1 /a)=a cosh (sinh^(−1)  (λ/( (√(1−λ^2 )))))       =a (√(1+((λ/( (√(1−λ^2 )))))^2 ))=(a/( (√(1−λ^2 ))))  s_1 =a tan φ=((aλ)/( (√(1−λ^2 ))))    at point B:  h_1 +d_2  tan φ+h=a cosh ((d_1 +d_2 )/a)  (h_1 /a)+(d_2 /a) tan φ+(h/a)=cosh ((d_1 +d_2 )/a)  (1/( (√(1−λ^2 ))))+(η/(ξδ (√(1−λ^2 ))))=cosh ((d_2 /a)+sinh^(−1)  (λ/( (√(1−λ^2 )))))−(d_2 /a)×(λ/( (√(1−λ^2 ))))  ⇒(√(1−λ^2  ))cosh ((d_2 /a)+sinh^(−1)  (λ/( (√(1−λ^2 )))))−λ((d_2 /a))=1+(η/(ξδ ))    ...(i)    s_1 +s=a sinh ((d_1 +d_2 )/a)  (s_1 /a)+((L−b)/a)=sinh ((d_2 /a)+(d_1 /a))  (λ/( (√(1−λ^2 ))))+((1−ξ)/(ξδ (√(1−λ^2 ))))=sinh ((d_2 /a)+sinh^(−1)  (λ/( (√(1−λ^2 )))))  ⇒(d_2 /a)=sinh^−  [(1/( (√(1−λ^2 ))))(((1−ξ)/(ξδ))+λ)]−sinh^(−1)  (λ/( (√(1−λ^2 ))))    ...(ii)  insert (ii) into (i) we get an equation  for solving ξ.    r=AC=b+(d_2 /(cos φ))    =b+(a/(cos φ))×(d_2 /a)    =ξL+ξLδ{sinh^(−1) [(1/( (√(1−λ^2 ))))(((1−ξ)/( ξδ))+λ) ]−sinh^(−1)  (λ/( (√(1−λ^2 ))))}  ⇒(r/L)=ξ+ξδ{sinh^(−1) [(1/( (√(1−λ^2 ))))(((1−ξ)/( ξδ))+λ) ]−sinh^(−1)  (λ/( (√(1−λ^2 ))))}    examples:  μ=1.5, θ=30°, η=(h/L)=(3/5)=0.6,  ϕ=0° ⇒ξ=(b/L)=0.1975, (r/L)=0.6556  ϕ=30° ⇒ξ=(b/L)=0.1521, (r/L)=0.5733  ϕ=60° ⇒ξ=(b/L)=0.1257, (r/L)=0.5225  ϕ=90° ⇒ξ=(b/L)=0.1172, (r/L)=0.5053

letη=hL,ξ=bLsinϕ=sinφsinθ=λ,saya=T0ρg=T1cosϕρg=bcosϕ((1+μ2)cos2θ1+λ2+λ)=ξL1λ2((μ2+1)cos2θ1+λ2+λ)letδ=(μ2+1)cos2θ1+λ2+λa=ξLδ1λ2eqn.ofcatenaryinxysystem:y=acoshxay=sinhxas=asinhxaatpointD:y=sinhd1a=tanϕd1a=sinh1(tanϕ)=sinh1λ1λ2h1=acoshd1a=acosh(sinh1λ1λ2)=a1+(λ1λ2)2=a1λ2s1=atanϕ=aλ1λ2atpointB:h1+d2tanϕ+h=acoshd1+d2ah1a+d2atanϕ+ha=coshd1+d2a11λ2+ηξδ1λ2=cosh(d2a+sinh1λ1λ2)d2a×λ1λ21λ2cosh(d2a+sinh1λ1λ2)λ(d2a)=1+ηξδ...(i)s1+s=asinhd1+d2as1a+Lba=sinh(d2a+d1a)λ1λ2+1ξξδ1λ2=sinh(d2a+sinh1λ1λ2)d2a=sinh[11λ2(1ξξδ+λ)]sinh1λ1λ2...(ii)insert(ii)into(i)wegetanequationforsolvingξ.r=AC=b+d2cosϕ=b+acosϕ×d2a=ξL+ξLδ{sinh1[11λ2(1ξξδ+λ)]sinh1λ1λ2}rL=ξ+ξδ{sinh1[11λ2(1ξξδ+λ)]sinh1λ1λ2}examples:μ=1.5,θ=30°,η=hL=35=0.6,φ=0°ξ=bL=0.1975,rL=0.6556φ=30°ξ=bL=0.1521,rL=0.5733φ=60°ξ=bL=0.1257,rL=0.5225φ=90°ξ=bL=0.1172,rL=0.5053

Commented by mr W last updated on 08/Oct/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com