Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 177456 by cortano1 last updated on 05/Oct/22

Answered by a.lgnaoui last updated on 05/Oct/22

posons  x=sin t    alors y=cos t  (1/(sin t))+(4/(cos t))=((cos t+4sin t)/(sin tcos t))  le rapoort  est minimale  si   scos t+4sin t mnimale)   { ((cos t+4sin t=0)),((sin tcos t≠0)) :}  4sin t=−cos t   tan t=−(1/4)=((sin t)/(cos t))  sin^2 t+16sin^2 t=1  sin t=((√(17))/(17))   t=sin^(−1) (((√(17))/(17)))  ⇒ x=((√(17))/(17))  y=(√(1−(1/(17))))   =((4(√(17)))/(17))  (1/x)+(4/y)=  ((√(17))/(17))+(4×((17)/(4(√(17)))))=((18(√(17)))/(17))  (1/x)+(4/y)=4,365

posonsx=sintalorsy=cost1sint+4cost=cost+4sintsintcostlerapoortestminimalesiscost+4sintmnimale){cost+4sint=0sintcost04sint=costtant=14=sintcostsin2t+16sin2t=1sint=1717t=sin1(1717)x=1717y=1117=417171x+4y=1717+(4×17417)=1817171x+4y=4,365

Commented by mr W last updated on 05/Oct/22

it′s wrong sir!  x=cos t >0  y=sin  t >0  cos t+4 sin t>0  !  you can′t get cos t+4 sin t=0 !

itswrongsir!x=cost>0y=sint>0cost+4sint>0!youcantgetcost+4sint=0!

Answered by mr W last updated on 05/Oct/22

x^2 +y^2 =1 and x,y>0  ⇒x=cos θ, y=sin θ with 0<θ<(π/2)  k=(1/x)+(4/y)=(1/(cos θ))+(4/(sin θ))  (dk/dθ)=((sin θ)/(cos^2  θ))−((4cos θ)/(sin^2  θ))=0  ⇒tan^3  θ=4   ⇒tan θ=(4)^(1/3)   sin θ=((4)^(1/3) /( (√(1+2(2)^(1/3) ))))  cos θ=(1/( (√(1+2(2)^(1/3) ))))  k_(min) =(√(1+2(2)^(1/3) ))+((4(√(1+2(2)^(1/3) )))/( (4)^(1/3) ))           =(1+(4/( (4)^(1/3) )))(√(1+2(2)^(1/3) ))           =(1+2(2)^(1/3) )^(3/2) ≈6.604

x2+y2=1andx,y>0x=cosθ,y=sinθwith0<θ<π2k=1x+4y=1cosθ+4sinθdkdθ=sinθcos2θ4cosθsin2θ=0tan3θ=4tanθ=43sinθ=431+223cosθ=11+223kmin=1+223+41+22343=(1+443)1+223=(1+223)326.604

Commented by Strengthenchen last updated on 05/Oct/22

how can get differential is 0?  because it is a trigonometric value?  get  d(c)/dx=0?

howcangetdifferentialis0?becauseitisatrigonometricvalue?getd(c)/dx=0?

Commented by Tawa11 last updated on 05/Oct/22

Great sirs

Greatsirs

Commented by Strengthenchen last updated on 06/Oct/22

thank a lot,   it′s perfect  to  use  character  of  function

thankalot,itsperfecttousecharacteroffunction

Terms of Service

Privacy Policy

Contact: info@tinkutara.com