Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 177493 by ali009 last updated on 06/Oct/22

find the laplace transform of  f(t)=ln(t)

$${find}\:{the}\:{laplace}\:{transform}\:{of} \\ $$$${f}\left({t}\right)={ln}\left({t}\right) \\ $$

Commented by JDamian last updated on 06/Oct/22

Is it suitable for Laplace Transform?

Commented by ali009 last updated on 06/Oct/22

yes i will put my solution later

$${yes}\:{i}\:{will}\:{put}\:{my}\:{solution}\:{later}\: \\ $$

Answered by ali009 last updated on 06/Oct/22

in general L[t^v ln(t)]=∫_0 ^∞ t^v ln(t)e^(−st) dt  let x=st dx=sdt  L[t^v ln(t)]=(1/s)∫_0 ^∞ e^(−x) ((x/s))^v ln((x/s))dx  =(1/s^(v+1) )∫_0 ^∞ e^(−x) x^v (ln(x)−ln(s))dx  =(1/s^(v+1) )(∫_0 ^∞ e^(−x) ln(x) x^v  dx −ln(s)∫_0 ^∞ e^(−x) x^v )  =(1/s^(v+1) )((d/dv)∫e^(−x) x^v  dx − ln(s)Γ(v+1))  =(1/s^(v+1) )((d/dv)Γ(v+1)−ln(s)Γ(v+1))  =(1/s^(v+1) )Γ(v+1)(((Γ′(v+1))/(Γ(v+1)))−ln(s))  =(1/s^(v+1) )Γ(v+1)(ψ(v+1)−ln(s))  when t=0  L[ln(t)]=(1/s^(v+1) )Γ(1)(ψ(1)−ln(s))  L[ln(t)]=((−γ−ln(s))/s)  γ is Euler′s constant

$${in}\:{general}\:\mathcal{L}\left[{t}^{{v}} {ln}\left({t}\right)\right]=\int_{\mathrm{0}} ^{\infty} {t}^{{v}} {ln}\left({t}\right){e}^{−{st}} {dt} \\ $$$${let}\:{x}={st}\:{dx}={sdt} \\ $$$$\mathcal{L}\left[{t}^{{v}} {ln}\left({t}\right)\right]=\frac{\mathrm{1}}{{s}}\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} \left(\frac{{x}}{{s}}\right)^{{v}} {ln}\left(\frac{{x}}{{s}}\right){dx} \\ $$$$=\frac{\mathrm{1}}{{s}^{{v}+\mathrm{1}} }\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {x}^{{v}} \left({ln}\left({x}\right)−{ln}\left({s}\right)\right){dx} \\ $$$$=\frac{\mathrm{1}}{{s}^{{v}+\mathrm{1}} }\left(\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {ln}\left({x}\right)\:{x}^{{v}} \:{dx}\:−{ln}\left({s}\right)\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {x}^{{v}} \right) \\ $$$$=\frac{\mathrm{1}}{{s}^{{v}+\mathrm{1}} }\left(\frac{{d}}{{dv}}\int{e}^{−{x}} {x}^{{v}} \:{dx}\:−\:{ln}\left({s}\right)\Gamma\left({v}+\mathrm{1}\right)\right) \\ $$$$=\frac{\mathrm{1}}{{s}^{{v}+\mathrm{1}} }\left(\frac{{d}}{{dv}}\Gamma\left({v}+\mathrm{1}\right)−{ln}\left({s}\right)\Gamma\left({v}+\mathrm{1}\right)\right) \\ $$$$=\frac{\mathrm{1}}{{s}^{{v}+\mathrm{1}} }\Gamma\left({v}+\mathrm{1}\right)\left(\frac{\Gamma'\left({v}+\mathrm{1}\right)}{\Gamma\left({v}+\mathrm{1}\right)}−{ln}\left({s}\right)\right) \\ $$$$=\frac{\mathrm{1}}{{s}^{{v}+\mathrm{1}} }\Gamma\left({v}+\mathrm{1}\right)\left(\psi\left({v}+\mathrm{1}\right)−{ln}\left({s}\right)\right) \\ $$$${when}\:{t}=\mathrm{0} \\ $$$$\mathcal{L}\left[{ln}\left({t}\right)\right]=\frac{\mathrm{1}}{{s}^{{v}+\mathrm{1}} }\Gamma\left(\mathrm{1}\right)\left(\psi\left(\mathrm{1}\right)−{ln}\left({s}\right)\right) \\ $$$$\mathcal{L}\left[{ln}\left({t}\right)\right]=\frac{−\gamma−{ln}\left({s}\right)}{{s}} \\ $$$$\gamma\:{is}\:{Euler}'{s}\:{constant} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com