Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 177530 by mnjuly1970 last updated on 06/Oct/22

  f (x ) + f ((( 1)/( ((1 −x^( 3) ))^(1/3) )) )= x^( 3)         is given. find the value of:                   f (−1)=?

f(x)+f(11x33)=x3isgiven.findthevalueof:f(1)=?

Answered by floor(10²Eta[1]) last updated on 06/Oct/22

f(x)+f((1/( ((1−x^3 ))^(1/3) )))=x^3  (1)  x→(1/( ((1−x^3 ))^(1/3) ))  f((1/( ((1−x^3 ))^(1/3) )))+f((((x^3 −1))^(1/3) /( x)))=(1/(1−x^3 )) (2)  x→(1/( ((1−x^3 ))^(1/3) ))   f((((x^3 −1))^(1/3) /x))+f(x)=((x^3 −1)/x^3 ) (3)  (3)−(2):  f(x)−f((1/( ((1−x^3 ))^(1/3) )))=((x^3 −1)/x^3 )−(1/(1−x^3 )) (4)  (1)+(4):  f(x)=(1/2)(((x^3 −1)/x^3 )−(1/(1−x^3 ))+x^3 )  ⇒f(−1)=(1/4)

f(x)+f(11x33)=x3(1)x11x33f(11x33)+f(x313x)=11x3(2)x11x33f(x313x)+f(x)=x31x3(3)(3)(2):f(x)f(11x33)=x31x311x3(4)(1)+(4):f(x)=12(x31x311x3+x3)f(1)=14

Commented by mnjuly1970 last updated on 07/Oct/22

thanks sir

thankssir

Answered by mr W last updated on 06/Oct/22

f(−1)+f((1/( (2)^(1/3) )))=−1   ...(i)  f((1/( (2)^(1/3) )))+f((2)^(1/3) )=(1/2)   ...(ii)  f((2)^(1/3) )+f(−1)=2   ...(iii)  (i)+(iii)−(ii):  2f(−1)=2−1−(1/2)=(1/2)  ⇒f(−1)=(1/4)

f(1)+f(123)=1...(i)f(123)+f(23)=12...(ii)f(23)+f(1)=2...(iii)(i)+(iii)(ii):2f(1)=2112=12f(1)=14

Commented by mnjuly1970 last updated on 07/Oct/22

thanks alot sir W

thanksalotsirW

Answered by a.lgnaoui last updated on 06/Oct/22

pour x=^3 (√2)     f(^3 (√2) )+f(1/(^3 (√(1−2))))=2  (d apres l expressiin)      donc  f(^3 (√2) )+f(−1)=2    (1)  pour   x=−1  f(−1)+f((1/(^3 (√(1−(−1)^3 )))))=f(−1)+f((1/(^3 (√2))))=−1  (2)  (1)  et (2)⇒2−f(^3 (√2) )=−1−f((1/(^3 (√2))))  soit  f(^3 (√2) )−f((1/(^3 (√2))))=3        (3)  Calcul de       f((1/(^3 (√2))))?  f((1/(^3 (√2))))+f((1/(^3 (√(1−(1/2))))))=(1/2)  f((1/(^3 (√2))))+f(^3 (√2))=(1/2)       (4)   (3)   et (4)  ⇒f((1/(^3 (√2))))=f(^3 (√2) )−3=(1/2)−f(−1)  (3)  et  (4)⇒ { ((f(^3 (√2) )−f((1/(^3 (√2))))=3)),((f(^3 (√2) )+f((1/(^3 (√2))))=(1/2))) :}  2f(^3 (√2) )=(7/2)     f((√2) )=(7/4)  finalement  en[remplacant  dans(1)  f((√2) )+f(−1)=2      f(−1)=2−f(^3 (√2) )=2−(7/4)     f(−1)=(1/4)

pourx=32f(32)+f1312=2(dapreslexpressiin)doncf(32)+f(1)=2(1)pourx=1f(1)+f(131(1)3)=f(1)+f(132)=1(2)(1)et(2)2f(32)=1f(132)soitf(32)f(132)=3(3)Calculdef(132)?f(132)+f(13112)=12f(132)+f(32)=12(4)(3)et(4)f(132)=f(32)3=12f(1)(3)et(4){f(32)f(132)=3f(32)+f(132)=122f(32)=72f(2)=74finalementen[remplacantdans(1)f(2)+f(1)=2f(1)=2f(32)=274f(1)=14

Terms of Service

Privacy Policy

Contact: info@tinkutara.com