Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 177548 by peter frank last updated on 07/Oct/22

A projectile is fired with velocity(v_o )  such that it passes through two  points both a distance(h) above the  horizontal.show that if the gun is adjusted  for the maximum range of the  separation of two position is  d=((v_o (√(v_o ^2 −4gh)))/g)

$$\mathrm{A}\:\mathrm{projectile}\:\mathrm{is}\:\mathrm{fired}\:\mathrm{with}\:\mathrm{velocity}\left(\mathrm{v}_{\mathrm{o}} \right) \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{it}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{two} \\ $$$$\mathrm{points}\:\mathrm{both}\:\mathrm{a}\:\mathrm{distance}\left(\mathrm{h}\right)\:\mathrm{above}\:\mathrm{the} \\ $$$$\mathrm{horizontal}.\mathrm{show}\:\mathrm{that}\:\mathrm{if}\:\mathrm{the}\:\mathrm{gun}\:\mathrm{is}\:\mathrm{adjusted} \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{range}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{separation}\:\mathrm{of}\:\mathrm{two}\:\mathrm{position}\:\mathrm{is} \\ $$$$\boldsymbol{\mathrm{d}}=\frac{\boldsymbol{\mathrm{v}}_{\boldsymbol{\mathrm{o}}} \sqrt{\boldsymbol{\mathrm{v}}_{\boldsymbol{\mathrm{o}}} ^{\mathrm{2}} −\mathrm{4}\boldsymbol{\mathrm{gh}}}}{\boldsymbol{\mathrm{g}}} \\ $$

Answered by blackmamba last updated on 07/Oct/22

y=y_o +x tan θ −((gx^2 )/(2v_o ^2  cos^2 θ))   since θ=45° ,y=h , y_o =0  then h=0+x tan 45°−((gx^2 )/(2v_o ^2  cos^2 45°))  b= x−((gx^2 )/v_o ^2 ) or x^2 −(v_o ^2 /g).x +(v_o ^2 /g)h =0  x_1 +x_2 = (v_o ^2 /g)  ⇒(x_1 −x_2 )^2 = (x_1 +x_2 )^2 −4x_1 x_2   ⇒d^2 = ((v_o ^2 /g))^2 −4(((v_o ^2  h)/g))  ⇒d=(√(((v_o ^2 /g))^2 (v_o ^2 −4gh)))  ⇒d =((v_o  (√(v_o ^2 −4gh)))/g)

$${y}={y}_{{o}} +{x}\:\mathrm{tan}\:\theta\:−\frac{{gx}^{\mathrm{2}} }{\mathrm{2}{v}_{{o}} ^{\mathrm{2}} \:\mathrm{cos}\:^{\mathrm{2}} \theta}\: \\ $$$${since}\:\theta=\mathrm{45}°\:,{y}={h}\:,\:{y}_{{o}} =\mathrm{0} \\ $$$${then}\:{h}=\mathrm{0}+{x}\:\mathrm{tan}\:\mathrm{45}°−\frac{{gx}^{\mathrm{2}} }{\mathrm{2}{v}_{{o}} ^{\mathrm{2}} \:\mathrm{cos}\:^{\mathrm{2}} \mathrm{45}°} \\ $$$${b}=\:{x}−\frac{{gx}^{\mathrm{2}} }{{v}_{{o}} ^{\mathrm{2}} }\:{or}\:{x}^{\mathrm{2}} −\frac{{v}_{{o}} ^{\mathrm{2}} }{{g}}.{x}\:+\frac{{v}_{{o}} ^{\mathrm{2}} }{{g}}{h}\:=\mathrm{0} \\ $$$${x}_{\mathrm{1}} +{x}_{\mathrm{2}} =\:\frac{{v}_{{o}} ^{\mathrm{2}} }{{g}} \\ $$$$\Rightarrow\left({x}_{\mathrm{1}} −{x}_{\mathrm{2}} \right)^{\mathrm{2}} =\:\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{x}_{\mathrm{1}} {x}_{\mathrm{2}} \\ $$$$\Rightarrow{d}^{\mathrm{2}} =\:\left(\frac{{v}_{{o}} ^{\mathrm{2}} }{{g}}\right)^{\mathrm{2}} −\mathrm{4}\left(\frac{{v}_{{o}} ^{\mathrm{2}} \:{h}}{{g}}\right) \\ $$$$\left.\Rightarrow{d}=\sqrt{\left(\frac{{v}_{{o}} ^{\mathrm{2}} }{{g}}\right)^{\mathrm{2}} \left({v}_{{o}} ^{\mathrm{2}} −\mathrm{4}{gh}\right.}\right) \\ $$$$\Rightarrow{d}\:=\frac{{v}_{{o}} \:\sqrt{{v}_{{o}} ^{\mathrm{2}} −\mathrm{4}{gh}}}{{g}} \\ $$

Commented by Tawa11 last updated on 07/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by Spillover last updated on 07/Oct/22

x=v_o cos θt  y=v_o sin θt−(1/2)gt^2   R=((v_o ^2 sin 2θ)/g)           θ=(π/4)  x=((v_o t)/( (√2)))       y=((v_o t)/( (√2)))−(1/2)gt^2   x^2 −((v_o ^2 x)/g)+((v_o ^2 h)/g)=0  x_1 =(v_o ^2 /(2g))−(v_o /(2g))(√(v_o ^2 −4gh))   x_2 =(v_o ^2 /(2g))−(v_o /(2g))(√(v_o ^2 −4gh))   d=x_2 −x_1   d=(v_o /g)(√(v_o ^2 −4gh))    ★★★

$$\mathrm{x}=\mathrm{v}_{\mathrm{o}} \mathrm{cos}\:\theta\mathrm{t}\:\:\mathrm{y}=\mathrm{v}_{\mathrm{o}} \mathrm{sin}\:\theta\mathrm{t}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{gt}^{\mathrm{2}} \\ $$$$\mathrm{R}=\frac{\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\theta}{\mathrm{g}}\:\:\:\:\:\:\:\:\:\:\:\theta=\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{x}=\frac{\mathrm{v}_{\mathrm{o}} \mathrm{t}}{\:\sqrt{\mathrm{2}}}\:\:\:\:\:\:\:\mathrm{y}=\frac{\mathrm{v}_{\mathrm{o}} \mathrm{t}}{\:\sqrt{\mathrm{2}}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{gt}^{\mathrm{2}} \\ $$$$\mathrm{x}^{\mathrm{2}} −\frac{\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} \mathrm{x}}{\mathrm{g}}+\frac{\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} \mathrm{h}}{\mathrm{g}}=\mathrm{0} \\ $$$$\mathrm{x}_{\mathrm{1}} =\frac{\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} }{\mathrm{2g}}−\frac{\mathrm{v}_{\mathrm{o}} }{\mathrm{2g}}\sqrt{\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} −\mathrm{4gh}}\: \\ $$$$\mathrm{x}_{\mathrm{2}} =\frac{\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} }{\mathrm{2g}}−\frac{\mathrm{v}_{\mathrm{o}} }{\mathrm{2g}}\sqrt{\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} −\mathrm{4gh}}\: \\ $$$$\mathrm{d}=\mathrm{x}_{\mathrm{2}} −\mathrm{x}_{\mathrm{1}} \\ $$$$\mathrm{d}=\frac{\mathrm{v}_{\mathrm{o}} }{\mathrm{g}}\sqrt{\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} −\mathrm{4gh}}\:\:\:\:\bigstar\bigstar\bigstar \\ $$$$ \\ $$

Commented by peter frank last updated on 07/Oct/22

more clarification please step 3?  and how θ=(π/4)? diagram please?

$$\mathrm{more}\:\mathrm{clarification}\:\mathrm{please}\:\mathrm{step}\:\mathrm{3}? \\ $$$$\mathrm{and}\:\mathrm{how}\:\theta=\frac{\pi}{\mathrm{4}}?\:\mathrm{diagram}\:\mathrm{please}? \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com