Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 177579 by mr W last updated on 07/Oct/22

if x^3 +y^3 +((x+y)/4)=((15)/2), find maximum  value of x+y.

ifx3+y3+x+y4=152,findmaximumvalueofx+y.

Answered by TheHoneyCat last updated on 07/Oct/22

if x=y+ε  15/2=x^3 +y^3 +((x+y)/4)  =(y+ε)^3 +y^3 +((2y+ε)/4)  =y^3 +3y^2 ε+3yε^2 +ε^3 +y^3 +((2y+ε)/4)  =y^3 +y^3 +((y+y)/4) + ε(3y^2 +1/4) +ε^2 (3y)    The function in y beeing monotonous  This shows that ε needs to be decreese (when  y is increesed)  if you are to maintain the equation.    Basicaly “x+y” is always greater when ε=0.    So the problem boils down to finding the   max value of 2x   when  2x^3 +(x/2)=((15)/2)  ⇔4x^3 +x=15  ⇔(x−3/2)(4x^2 +6x+10)=0  Since 6^2 −4×10<0  The only possible solution is thus:   x=3/2    (one can verify that it is not a minimum  by comparing to values for x=0 and y≠0...)

ifx=y+ϵ15/2=x3+y3+x+y4=(y+ϵ)3+y3+2y+ϵ4=y3+3y2ϵ+3yϵ2+ϵ3+y3+2y+ϵ4=y3+y3+y+y4+ϵ(3y2+1/4)+ϵ2(3y)ThefunctioninybeeingmonotonousThisshowsthatϵneedstobedecreese(whenyisincreesed)ifyouaretomaintaintheequation.Basicalyx+yisalwaysgreaterwhenϵ=0.Sotheproblemboilsdowntofindingthemaxvalueof2xwhen2x3+x2=1524x3+x=15(x3/2)(4x2+6x+10)=0Since624×10<0Theonlypossiblesolutionisthus:x=3/2(onecanverifythatitisnotaminimumbycomparingtovaluesforx=0andy0...)

Commented by mr W last updated on 07/Oct/22

thanks sir!

thankssir!

Answered by mr W last updated on 07/Oct/22

let t=x+y>0, s=xy≤(((x+y)^2 )/4)=(t^2 /4)  (x+y)^3 −3xy(x+y)+((x+y)/4)=((15)/2)  t^3 −3st+(t/4)=((15)/2)  t^3 +(t/4)=((15)/2)+3st≤((15)/2)+((3t^3 )/4)  (t^3 /4)+(t/4)≤((15)/2)  t^3 +t≤30  t(t^2 +1)≤30  ⇒t≤3 ⇒(x+y)_(max) =3

lett=x+y>0,s=xy(x+y)24=t24(x+y)33xy(x+y)+x+y4=152t33st+t4=152t3+t4=152+3st152+3t34t34+t4152t3+t30t(t2+1)30t3(x+y)max=3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com