Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 177628 by mr W last updated on 07/Oct/22

Commented by mr W last updated on 07/Oct/22

elipse with a=10cm and b=6cm is  rotated about its center by 60°. find  the shaded area.

elipsewitha=10cmandb=6cmisrotatedaboutitscenterby60°.findtheshadedarea.

Answered by mr W last updated on 08/Oct/22

Commented by mr W last updated on 09/Oct/22

red elipse:  (x^2 /(10^2 ))+(y^2 /6^2 )=1  ((r^2 cos^2  θ)/(10^2 ))+((y^2 sin^2  θ)/6^2 )=1  ⇒r=((60)/( (√(36 cos^2  θ+100 sin^2  θ))))  blue elipse:  ⇒r=((60)/( (√(36 cos^2  (θ−ϕ)+100 sin^2  (θ−ϕ)))))  intersection point P, Q:  ((60)/( (√(36 cos^2  (θ−ϕ)+100 sin^2  (θ−ϕ)))))=((60)/( (√(36 cos^2  θ+100 sin^2  θ))))  36 cos^2  (θ−ϕ)+100 sin^2  (θ−ϕ)=36 cos^2  θ+100 sin^2  θ  9 [cos^2  (θ−ϕ)−cos^2  θ]+25 [sin^2  (θ−ϕ)−sin^2  θ]=0  9 [cos (θ−ϕ)+cos θ][cos (θ−ϕ)−cos θ]+25 [sin (θ−ϕ)+sin θ][sin (θ−ϕ)−sin θ]=0  9(cos θ cos ϕ+sin θ sin ϕ+cos θ)(cos θ cos ϕ+sin θ sin ϕ−cos θ)+25 (sin θ cos ϕ−cos θ sin ϕ+sin θ)(sin θ cos ϕ−cos θ sin ϕ−sin θ)=0  9(((1+cos ϕ)/(sin ϕ))+tan θ)(((1−cos ϕ)/(sin ϕ))−tan θ)+25(((1+cos ϕ)/(sin ϕ))tan θ−1)(((1−cos ϕ)/(sin ϕ))tan θ+1)=0  tan^2  θ+((2 tan θ)/(tan ϕ))−1=0  with ϕ=60°  tan^2  θ+((2 tan θ)/( (√3)))−1=0  tan θ=((−1±2)/( (√3)))= { ((1/( (√3)))),((−(√3))) :}  ⇒θ_Q =(π/6)  ⇒θ_P =π−(π/3)=((2π)/3)    area of sector of blue elipse:  A_(blue sector) =(1/2)∫_(θ_Q −ϕ) ^(θ_P −ϕ) r^2 dθ  area of sector of red elipse:  A_(red sector) =(1/2)∫_θ_Q  ^θ_P  r^2 dθ  shaded are=2(sector blue−sector red):  A_(shaded) =∫_(θ_Q −ϕ) ^(θ_P −ϕ) r^2 dθ−∫_θ_Q  ^θ_P  r^2 dθ  A_(shaded) =∫_(θ_Q −ϕ) ^θ_Q  r^2 dθ−∫_(θ_P −ϕ) ^θ_P  r^2 dθ  ∫(dθ/(b^2 cos^2  θ+a^2 sin^2  θ))=(1/(ab))×tan^(−1) ((a/b)×tan θ)+C  ∫r^2 dθ=∫((3600 dθ)/( 36 cos^2  θ+100 sin^2  θ))              =60 tan^(−1) (((5 tan θ)/3))+C  (A_(shadex) /(60))=[tan^(−1) (((5 tan θ)/3))]_(θ_Q −(π/3)) ^θ_Q  −[tan^(−1) (((5 tan θ)/3))]_(θ_P −(π/3)) ^θ_P    (A_(shadex) /(60))=[tan^(−1) (((5 tan θ)/3))]_(−(π/6)) ^(π/6) −[tan^(−1) (((5 tan θ)/3))]_(π/3) ^((2π)/3)   (A_(shadex) /(60))=2 tan^(−1) ((5/( 3(√3))))−[π−2 tan^(−1) ((5/( (√3))))]  (A_(shadex) /(60))=2[tan^(−1) ((5/(3(√3))))+tan^(−1) ((5/( (√3))))]−π  A_(shaded) =120[tan^(−1) ((5/(3(√3))))+tan^(−1) ((5/( (√3))))]−60π                 ≈51.9227

redelipse:x2102+y262=1r2cos2θ102+y2sin2θ62=1r=6036cos2θ+100sin2θblueelipse:r=6036cos2(θφ)+100sin2(θφ)intersectionpointP,Q:6036cos2(θφ)+100sin2(θφ)=6036cos2θ+100sin2θ36cos2(θφ)+100sin2(θφ)=36cos2θ+100sin2θ9[cos2(θφ)cos2θ]+25[sin2(θφ)sin2θ]=09[cos(θφ)+cosθ][cos(θφ)cosθ]+25[sin(θφ)+sinθ][sin(θφ)sinθ]=09(cosθcosφ+sinθsinφ+cosθ)(cosθcosφ+sinθsinφcosθ)+25(sinθcosφcosθsinφ+sinθ)(sinθcosφcosθsinφsinθ)=09(1+cosφsinφ+tanθ)(1cosφsinφtanθ)+25(1+cosφsinφtanθ1)(1cosφsinφtanθ+1)=0tan2θ+2tanθtanφ1=0withφ=60°tan2θ+2tanθ31=0tanθ=1±23={133θQ=π6θP=ππ3=2π3areaofsectorofblueelipse:Abluesector=12θQφθPφr2dθareaofsectorofredelipse:Aredsector=12θQθPr2dθshadedare=2(sectorbluesectorred):Ashaded=θQφθPφr2dθθQθPr2dθAshaded=θQφθQr2dθθPφθPr2dθdθb2cos2θ+a2sin2θ=1ab×tan1(ab×tanθ)+Cr2dθ=3600dθ36cos2θ+100sin2θ=60tan1(5tanθ3)+CAshadex60=[tan1(5tanθ3)]θQπ3θQ[tan1(5tanθ3)]θPπ3θPAshadex60=[tan1(5tanθ3)]π6π6[tan1(5tanθ3)]π32π3Ashadex60=2tan1(533)[π2tan1(53)]Ashadex60=2[tan1(533)+tan1(53)]πAshaded=120[tan1(533)+tan1(53)]60π51.9227

Commented by a.lgnaoui last updated on 08/Oct/22

Bonne interpretation Merci.

BonneinterpretationMerci.

Commented by mr W last updated on 09/Oct/22

Commented by mr W last updated on 09/Oct/22

alternative:  A_(shaded) =A_(elipse) −4A_(red sector)                 =60π−2×60[tan^(−1) (((5 tan θ)/3))]_(π/6) ^((2π)/3)                 =60π−2×60[π−tan^(−1) (((5(√3))/3))−tan^(−1) ((5/(3(√3))))]                =120[tan^(−1) (((5(√3))/3))+tan^(−1) ((5/(3(√3))))]−60π                ≈51.9227

alternative:Ashaded=Aelipse4Aredsector=60π2×60[tan1(5tanθ3)]π62π3=60π2×60[πtan1(533)tan1(533)]=120[tan1(533)+tan1(533)]60π51.9227

Commented by Tawa11 last updated on 09/Oct/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com