Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 177665 by Ahmed777hamouda last updated on 07/Oct/22

Answered by Ar Brandon last updated on 07/Oct/22

∫_(−∞) ^∞ sinx^2 dx=∫_0 ^∞ ((sint)/( (√t)))dt=(π/(2Γ((1/2))sin((π/2)∙(1/2))))=(√(π/2))

sinx2dx=0sinttdt=π2Γ(12)sin(π212)=π2

Answered by Mathspace last updated on 07/Oct/22

∫_(−∞) ^(+∞) cos(x^2 )dx−i∫_(−∞) ^(+∞) sin(x^2 )dx  =∫_(−∞) ^(+∞) e^(−ix^2 ) dx  ((√i)x=t)  =∫_(−∞) ^(+∞) e^(−t^2 ) (dt/( (√i)))=(1/( (√i)))∫_(−∞) ^(+∞) e^(−t^2 ) dt  =e^(−((iπ)/4)) (√π)=(√π){cos((π/4))−isin((π/4))}  =(√π){(1/( (√2)))−(1/( (√2)))i}  ⇒∫_(−∞) ^(+∞) cos(x^2 )dx=(√(π/2))  and ∫_(−∞) ^(+∞) sin(x^2 )dx=(√(π/2))  another way with residus   theorem but very long

+cos(x2)dxi+sin(x2)dx=+eix2dx(ix=t)=+et2dti=1i+et2dt=eiπ4π=π{cos(π4)isin(π4)}=π{1212i}+cos(x2)dx=π2and+sin(x2)dx=π2anotherwaywithresidustheorembutverylong

Terms of Service

Privacy Policy

Contact: info@tinkutara.com