Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 177787 by mr W last updated on 09/Oct/22

Commented by mr W last updated on 09/Oct/22

elipse with parameters a and b is  rotated about its center by angle ϕ.  find the overlapping area in terms  of a, b, ϕ.  (0≤ϕ≤(π/2))

elipsewithparametersaandbisrotatedaboutitscenterbyangleφ.findtheoverlappingareaintermsofa,b,φ.(0φπ2)

Answered by mr W last updated on 09/Oct/22

Commented by mr W last updated on 09/Oct/22

red elipse:  (x^2 /a^2 )+(y^2 /b^2 )=1  ((r^2 cos^2  θ)/a^2 )+((y^2 sin^2  θ)/b^2 )=1  ⇒r^2 =((a^2 b^2 )/( b^2  cos^2  θ+a^2  sin^2  θ))  θ_P =(ϕ/2)  θ_Q =((π+ϕ)/2)=π−((π/2)−(ϕ/2))    area of sector OPQ of red elipse:  A_(sector) =(1/2)∫_θ_P  ^θ_Q  r^2 dθ  overlapping area = 4×sector  A_(overlapping) =2∫_θ_P  ^θ_Q  r^2 dθ     =2∫_θ_P  ^θ_Q  ((a^2 b^2 )/( b^2  cos^2  θ+a^2  sin^2  θ)) dθ     =2ab[tan^(−1) ((a/b)×tan θ)]_θ_P  ^θ_Q       =2ab{π−tan^(−1) [(a/b)×tan ((π/2)−(ϕ/2))]−tan^(−1) ((a/b)×tan (ϕ/2))}     =2ab[π−tan^(−1) ((a/b) cot (ϕ/2))−tan^(−1) ((a/b) tan (ϕ/2))]

redelipse:x2a2+y2b2=1r2cos2θa2+y2sin2θb2=1r2=a2b2b2cos2θ+a2sin2θθP=φ2θQ=π+φ2=π(π2φ2)areaofsectorOPQofredelipse:Asector=12θPθQr2dθoverlappingarea=4×sectorAoverlapping=2θPθQr2dθ=2θPθQa2b2b2cos2θ+a2sin2θdθ=2ab[tan1(ab×tanθ)]θPθQ=2ab{πtan1[ab×tan(π2φ2)]tan1(ab×tanφ2)}=2ab[πtan1(abcotφ2)tan1(abtanφ2)]

Commented by Tawa11 last updated on 09/Oct/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com