Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 177793 by cortano1 last updated on 09/Oct/22

   Determine the minimum value    ((sec^4 α)/(tan^2 β)) + ((sec^4 β)/(tan^2 α))     over all α,β ≠ ((kπ)/2) , k ε Z

$$\:\:\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value} \\ $$$$\:\:\frac{\mathrm{sec}\:^{\mathrm{4}} \alpha}{\mathrm{tan}\:^{\mathrm{2}} \beta}\:+\:\frac{\mathrm{sec}\:^{\mathrm{4}} \beta}{\mathrm{tan}\:^{\mathrm{2}} \alpha}\: \\ $$$$\:\:\mathrm{over}\:\mathrm{all}\:\alpha,\beta\:\neq\:\frac{\mathrm{k}\pi}{\mathrm{2}}\:,\:\mathrm{k}\:\varepsilon\:\mathbb{Z}\: \\ $$

Answered by mahdipoor last updated on 09/Oct/22

get  tan^2 x=z⇒  sec^4 x=((1/(cos^2 x)))^2 =(1+tan^2 x)^2 =(1+z)^2   ⇒⇒  ⇒tan^2 β=m⇒sec^4 β=(1+m)^2   ⇒tan^2 α=n⇒sec^4 α=(1+n)^2   ⇒⇒  f(α,β)=f(m,n)=(((1+m)^2 )/n)+(((1+n)^2 )/m)   m,n≠0   { (((∂f/∂m)=((2(1+m))/n)−(((1+n)^2 )/m^2 )=0)),(((∂f/∂n)=−(((1+m)^2 )/n^2 )+((2(1+n))/m)=0)) :}  ⇒m=n=1  min f=f(1,1)=8

$${get}\:\:{tan}^{\mathrm{2}} {x}={z}\Rightarrow \\ $$$${sec}^{\mathrm{4}} {x}=\left(\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}\right)^{\mathrm{2}} =\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right)^{\mathrm{2}} =\left(\mathrm{1}+{z}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\Rightarrow \\ $$$$\Rightarrow{tan}^{\mathrm{2}} \beta={m}\Rightarrow{sec}^{\mathrm{4}} \beta=\left(\mathrm{1}+{m}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{tan}^{\mathrm{2}} \alpha={n}\Rightarrow{sec}^{\mathrm{4}} \alpha=\left(\mathrm{1}+{n}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\Rightarrow \\ $$$${f}\left(\alpha,\beta\right)={f}\left({m},{n}\right)=\frac{\left(\mathrm{1}+{m}\right)^{\mathrm{2}} }{{n}}+\frac{\left(\mathrm{1}+{n}\right)^{\mathrm{2}} }{{m}}\:\:\:{m},{n}\neq\mathrm{0} \\ $$$$\begin{cases}{\frac{\partial{f}}{\partial{m}}=\frac{\mathrm{2}\left(\mathrm{1}+{m}\right)}{{n}}−\frac{\left(\mathrm{1}+{n}\right)^{\mathrm{2}} }{{m}^{\mathrm{2}} }=\mathrm{0}}\\{\frac{\partial{f}}{\partial{n}}=−\frac{\left(\mathrm{1}+{m}\right)^{\mathrm{2}} }{{n}^{\mathrm{2}} }+\frac{\mathrm{2}\left(\mathrm{1}+{n}\right)}{{m}}=\mathrm{0}}\end{cases} \\ $$$$\Rightarrow{m}={n}=\mathrm{1} \\ $$$${min}\:{f}={f}\left(\mathrm{1},\mathrm{1}\right)=\mathrm{8} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com