Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 177884 by DAVONG last updated on 10/Oct/22

Answered by mr W last updated on 10/Oct/22

6 black and n red balls in bag.  to take 3 balls there are totally  C_3 ^(n+6)  ways.  to take 1 black and 2 red balls there  are C_1 ^6 C_2 ^n  ways.  P_n =((C_1 ^6 C_2 ^n )/C_3 ^(n+6) )       =((6×n(n−1)×6)/(2×(n+6)(n+5)(n+4)))       =((18n(n−1))/((n+6)(n+5)(n+4)))  P_n  is maximum when n=11 or 12  P_(n,max) =((18×11×10)/(17×16×15))=((33)/(68))  ⇒(D)

$$\mathrm{6}\:{black}\:{and}\:{n}\:{red}\:{balls}\:{in}\:{bag}. \\ $$$${to}\:{take}\:\mathrm{3}\:{balls}\:{there}\:{are}\:{totally} \\ $$$${C}_{\mathrm{3}} ^{{n}+\mathrm{6}} \:{ways}. \\ $$$${to}\:{take}\:\mathrm{1}\:{black}\:{and}\:\mathrm{2}\:{red}\:{balls}\:{there} \\ $$$${are}\:{C}_{\mathrm{1}} ^{\mathrm{6}} {C}_{\mathrm{2}} ^{{n}} \:{ways}. \\ $$$${P}_{{n}} =\frac{{C}_{\mathrm{1}} ^{\mathrm{6}} {C}_{\mathrm{2}} ^{{n}} }{{C}_{\mathrm{3}} ^{{n}+\mathrm{6}} } \\ $$$$\:\:\:\:\:=\frac{\mathrm{6}×{n}\left({n}−\mathrm{1}\right)×\mathrm{6}}{\mathrm{2}×\left({n}+\mathrm{6}\right)\left({n}+\mathrm{5}\right)\left({n}+\mathrm{4}\right)} \\ $$$$\:\:\:\:\:=\frac{\mathrm{18}{n}\left({n}−\mathrm{1}\right)}{\left({n}+\mathrm{6}\right)\left({n}+\mathrm{5}\right)\left({n}+\mathrm{4}\right)} \\ $$$${P}_{{n}} \:{is}\:{maximum}\:{when}\:{n}=\mathrm{11}\:{or}\:\mathrm{12} \\ $$$${P}_{{n},{max}} =\frac{\mathrm{18}×\mathrm{11}×\mathrm{10}}{\mathrm{17}×\mathrm{16}×\mathrm{15}}=\frac{\mathrm{33}}{\mathrm{68}} \\ $$$$\Rightarrow\left({D}\right) \\ $$

Commented by mr W last updated on 10/Oct/22

it′s not easy to see when P_n  is   maximum. i just used the function  f(x)=((18x(x−1))/((x+6)(x+5)(x+4))) and found  its maximum at x≈11.5. since n  is integer, we get P_n  is maximum  when n=11 or 12.

$${it}'{s}\:{not}\:{easy}\:{to}\:{see}\:{when}\:{P}_{{n}} \:{is}\: \\ $$$${maximum}.\:{i}\:{just}\:{used}\:{the}\:{function} \\ $$$${f}\left({x}\right)=\frac{\mathrm{18}{x}\left({x}−\mathrm{1}\right)}{\left({x}+\mathrm{6}\right)\left({x}+\mathrm{5}\right)\left({x}+\mathrm{4}\right)}\:{and}\:{found} \\ $$$${its}\:{maximum}\:{at}\:{x}\approx\mathrm{11}.\mathrm{5}.\:{since}\:{n} \\ $$$${is}\:{integer},\:{we}\:{get}\:{P}_{{n}} \:{is}\:{maximum} \\ $$$${when}\:{n}=\mathrm{11}\:{or}\:\mathrm{12}. \\ $$

Commented by Acem last updated on 10/Oct/22

What does the amount P_n  refer to?

$${What}\:{does}\:{the}\:{amount}\:{P}_{{n}} \:{refer}\:{to}? \\ $$

Commented by Acem last updated on 10/Oct/22

Does it indicat the probability of this event   C_1 ^( 6) ×C_2 ^( n)  occuring?

$${Does}\:{it}\:{indicat}\:{the}\:{probability}\:{of}\:{this}\:{event} \\ $$$$\:{C}_{\mathrm{1}} ^{\:\mathrm{6}} ×{C}_{\mathrm{2}} ^{\:{n}} \:{occuring}? \\ $$

Commented by mr W last updated on 10/Oct/22

yes. as the question says: P_n  is the  probability of taking 1 black ball and  2 red balls.

$${yes}.\:{as}\:{the}\:{question}\:{says}:\:{P}_{{n}} \:{is}\:{the} \\ $$$${probability}\:{of}\:{taking}\:\mathrm{1}\:{black}\:{ball}\:{and} \\ $$$$\mathrm{2}\:{red}\:{balls}. \\ $$

Commented by Acem last updated on 11/Oct/22

 Yes!    f(n)= ((18n^2 −18n)/(n^3 +15n^2 +74n+120))  = P_n    f^( ′) (n)= ((−18n^4 +36n^3 +1602n^2 +4320n−2160)/((n^3 +15n^2 +74n+120)^2 ))   f^( ′) (n)= 0   −18n^4 +36n^3 +1602n^2 +4320n−2160= 0   n_1  ≅ −4.38 , n_2  ≅ −5.54 , n_3  ≅ 0.43 Refuses   n_4  ≅ 11.5    { ((n= 11 ⇒ P_(11, max) = 0.485 294 117 647 06)),((n= 12 ⇒ P_(12, max) = 0.485 294 117 647 06)) :}     Note: I got n_(1−4)  from Graph calculator   How can i solve an equation ax^4 +....

$$\:{Yes}!\: \\ $$$$\:{f}\left({n}\right)=\:\frac{\mathrm{18}{n}^{\mathrm{2}} −\mathrm{18}{n}}{{n}^{\mathrm{3}} +\mathrm{15}{n}^{\mathrm{2}} +\mathrm{74}{n}+\mathrm{120}}\:\:=\:\boldsymbol{{P}}_{\boldsymbol{{n}}} \\ $$$$\:{f}^{\:'} \left({n}\right)=\:\frac{−\mathrm{18}{n}^{\mathrm{4}} +\mathrm{36}{n}^{\mathrm{3}} +\mathrm{1602}{n}^{\mathrm{2}} +\mathrm{4320}{n}−\mathrm{2160}}{\left({n}^{\mathrm{3}} +\mathrm{15}{n}^{\mathrm{2}} +\mathrm{74}{n}+\mathrm{120}\right)^{\mathrm{2}} } \\ $$$$\:{f}^{\:'} \left({n}\right)=\:\mathrm{0} \\ $$$$\:−\mathrm{18}{n}^{\mathrm{4}} +\mathrm{36}{n}^{\mathrm{3}} +\mathrm{1602}{n}^{\mathrm{2}} +\mathrm{4320}{n}−\mathrm{2160}=\:\mathrm{0} \\ $$$$\:{n}_{\mathrm{1}} \:\cong\:−\mathrm{4}.\mathrm{38}\:,\:{n}_{\mathrm{2}} \:\cong\:−\mathrm{5}.\mathrm{54}\:,\:{n}_{\mathrm{3}} \:\cong\:\mathrm{0}.\mathrm{43}\:{Refuses} \\ $$$$\:\boldsymbol{{n}}_{\mathrm{4}} \:\cong\:\mathrm{11}.\mathrm{5} \\ $$$$\:\begin{cases}{{n}=\:\mathrm{11}\:\Rightarrow\:{P}_{\mathrm{11},\:{max}} =\:\mathrm{0}.\mathrm{485}\:\mathrm{294}\:\mathrm{117}\:\mathrm{647}\:\mathrm{06}}\\{{n}=\:\mathrm{12}\:\Rightarrow\:{P}_{\mathrm{12},\:{max}} =\:\mathrm{0}.\mathrm{485}\:\mathrm{294}\:\mathrm{117}\:\mathrm{647}\:\mathrm{06}}\end{cases} \\ $$$$\: \\ $$$$\boldsymbol{{Note}}:\:{I}\:{got}\:{n}_{\mathrm{1}−\mathrm{4}} \:{from}\:{Graph}\:{calculator} \\ $$$$\:\boldsymbol{{How}}\:\boldsymbol{{can}}\:\boldsymbol{{i}}\:\boldsymbol{{solve}}\:\boldsymbol{{an}}\:\boldsymbol{{equation}}\:\boldsymbol{{ax}}^{\mathrm{4}} +.... \\ $$$$ \\ $$$$ \\ $$

Commented by mr W last updated on 11/Oct/22

usually it is a quick way to determine  P_(n, max )  using graph calculator.  but really solving f′(n)=0 is not a  good way, even impossible like above.  besides, in an examination it is not   allowed to use graph calculator.    the best and yet easy and exact way   is the following:  we only need to find the n_(max)  such  that P_n ≥P_(n−1) , i.e.   ((18n(n−1))/((n+6)(n+5)(n+4))) ≥((18(n−1)(n−2))/((n+5)(n+4)(n+3)))   ⇒(n/(n+6)) ≥((n−2)/(n+3))  n^2 +3n≥n^2 +4n−12  n≤12  that means till n=12, P_n ≥P_(n−1)   and upon n=13, P_n <P_(n−1) .  so P_(12)  is the maximum.   P_(12) =((18×12×11)/(18×17×16))=((33)/(68))

$${usually}\:{it}\:{is}\:{a}\:{quick}\:{way}\:{to}\:{determine} \\ $$$${P}_{{n},\:{max}\:} \:{using}\:{graph}\:{calculator}. \\ $$$${but}\:{really}\:{solving}\:{f}'\left({n}\right)=\mathrm{0}\:{is}\:{not}\:{a} \\ $$$${good}\:{way},\:{even}\:{impossible}\:{like}\:{above}. \\ $$$${besides},\:{in}\:{an}\:{examination}\:{it}\:{is}\:{not}\: \\ $$$${allowed}\:{to}\:{use}\:{graph}\:{calculator}. \\ $$$$ \\ $$$${the}\:{best}\:{and}\:{yet}\:{easy}\:{and}\:{exact}\:{way}\: \\ $$$${is}\:{the}\:{following}: \\ $$$${we}\:{only}\:{need}\:{to}\:{find}\:{the}\:{n}_{{max}} \:{such} \\ $$$${that}\:{P}_{{n}} \geqslant{P}_{{n}−\mathrm{1}} ,\:{i}.{e}. \\ $$$$\:\frac{\mathrm{18}{n}\left({n}−\mathrm{1}\right)}{\left({n}+\mathrm{6}\right)\left({n}+\mathrm{5}\right)\left({n}+\mathrm{4}\right)}\:\geqslant\frac{\mathrm{18}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\left({n}+\mathrm{5}\right)\left({n}+\mathrm{4}\right)\left({n}+\mathrm{3}\right)} \\ $$$$\:\Rightarrow\frac{{n}}{{n}+\mathrm{6}}\:\geqslant\frac{{n}−\mathrm{2}}{{n}+\mathrm{3}} \\ $$$${n}^{\mathrm{2}} +\mathrm{3}{n}\geqslant{n}^{\mathrm{2}} +\mathrm{4}{n}−\mathrm{12} \\ $$$${n}\leqslant\mathrm{12} \\ $$$${that}\:{means}\:{till}\:{n}=\mathrm{12},\:{P}_{{n}} \geqslant{P}_{{n}−\mathrm{1}} \\ $$$${and}\:{upon}\:{n}=\mathrm{13},\:{P}_{{n}} <{P}_{{n}−\mathrm{1}} . \\ $$$${so}\:{P}_{\mathrm{12}} \:{is}\:{the}\:{maximum}. \\ $$$$\:{P}_{\mathrm{12}} =\frac{\mathrm{18}×\mathrm{12}×\mathrm{11}}{\mathrm{18}×\mathrm{17}×\mathrm{16}}=\frac{\mathrm{33}}{\mathrm{68}} \\ $$

Commented by Tawa11 last updated on 11/Oct/22

Great sirs

$$\mathrm{Great}\:\mathrm{sirs} \\ $$

Commented by Acem last updated on 11/Oct/22

 The P_(n_max)  ≥ P_(n−1)  is a genius idea!!   Big Thanks     Note: In order to avoid the student from     calculating the cases in which n less     than 12, in parallel with P_(n_max)  ≥ P_(n−1)      we add beside another logical inequality:   P_(n_max)  ≥ P_(n+1)   & P_(n_max)  ≥ P_(n−1)       ((18n(n−1))/((n+6)(n+5)(n+4))) ≥ ((18(n+1).n)/((n+7)(n+6)(n+5)))           ((n−1)/(n+4)) ≥ ((n+1)/(n+7)) ⇒ n≥ 11     Then we have  n≤ 12 & n≥ 11 i.e.     n_1 = 11, n_2 =12 both achieve to be P_(11or 12_max)    P_(11 or 12−max) = ((33)/(68))     My greetings

$$\:{The}\:{P}_{{n\_max}} \:\geqslant\:{P}_{{n}−\mathrm{1}} \:{is}\:{a}\:\boldsymbol{{genius}}\:\boldsymbol{{idea}}!! \\ $$$$\:{Big}\:{Thanks} \\ $$$$ \\ $$$$\:\boldsymbol{{Note}}:\:{In}\:{order}\:{to}\:{avoid}\:{the}\:{student}\:{from} \\ $$$$\:\:\:{calculating}\:{the}\:{cases}\:{in}\:{which}\:{n}\:{less} \\ $$$$\:\:\:{than}\:\mathrm{12},\:{in}\:{parallel}\:{with}\:{P}_{{n\_max}} \:\geqslant\:{P}_{{n}−\mathrm{1}} \\ $$$$\:\:\:{we}\:{add}\:{beside}\:{another}\:{logical}\:{inequality}: \\ $$$$\:\boldsymbol{{P}}_{\boldsymbol{{n\_max}}} \:\geqslant\:\boldsymbol{{P}}_{\boldsymbol{{n}}+\mathrm{1}} \:\:\&\:{P}_{{n\_max}} \:\geqslant\:{P}_{{n}−\mathrm{1}} \: \\ $$$$ \\ $$$$\:\frac{\mathrm{18}{n}\left({n}−\mathrm{1}\right)}{\left({n}+\mathrm{6}\right)\left({n}+\mathrm{5}\right)\left({n}+\mathrm{4}\right)}\:\geqslant\:\frac{\mathrm{18}\left({n}+\mathrm{1}\right).{n}}{\left({n}+\mathrm{7}\right)\left({n}+\mathrm{6}\right)\left({n}+\mathrm{5}\right)} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\frac{{n}−\mathrm{1}}{{n}+\mathrm{4}}\:\geqslant\:\frac{{n}+\mathrm{1}}{{n}+\mathrm{7}}\:\Rightarrow\:{n}\geqslant\:\mathrm{11} \\ $$$$ \\ $$$$\:{Then}\:{we}\:{have}\:\:{n}\leqslant\:\mathrm{12}\:\&\:{n}\geqslant\:\mathrm{11}\:{i}.{e}. \\ $$$$ \\ $$$$\:{n}_{\mathrm{1}} =\:\mathrm{11},\:{n}_{\mathrm{2}} =\mathrm{12}\:{both}\:{achieve}\:{to}\:{be}\:{P}_{\mathrm{11}{or}\:\mathrm{12\_}{max}} \\ $$$$\:{P}_{\mathrm{11}\:{or}\:\mathrm{12}−{max}} =\:\frac{\mathrm{33}}{\mathrm{68}} \\ $$$$ \\ $$$$\:{My}\:{greetings} \\ $$

Commented by Acem last updated on 11/Oct/22

 It is necessary to do that   Because from only this n≤ 12   the student may think that all values of n   less than 12 i.e. (12, 11, 10..., 2) red balls   achieve to be P_(n≤12_max)

$$\:{It}\:{is}\:{necessary}\:{to}\:{do}\:{that} \\ $$$$\:{Because}\:{from}\:{only}\:{this}\:{n}\leqslant\:\mathrm{12} \\ $$$$\:{the}\:{student}\:{may}\:{think}\:{that}\:{all}\:{values}\:{of}\:{n} \\ $$$$\:{less}\:{than}\:\mathrm{12}\:{i}.{e}.\:\left(\mathrm{12},\:\mathrm{11},\:\mathrm{10}...,\:\mathrm{2}\right)\:{red}\:{balls} \\ $$$$\:{achieve}\:{to}\:{be}\:{P}_{{n}\leqslant\mathrm{12\_}{max}} \\ $$

Commented by mr W last updated on 11/Oct/22

then we can do this  P_n <P_(n+1)    ((18n(n−1))/((n+6)(n+5)(n+4))) <((18(n−1)(n−2))/((n+5)(n+4)(n+3)))   (n/(n+6)) <((n−2)/(n+3))  ⇒n>12  i.e. upon n=13, P_n <P_(n+1)   ⇒P_(12)  is maximum.  we don′t need to know whether P_(11)   is also maximum.

$${then}\:{we}\:{can}\:{do}\:{this} \\ $$$${P}_{{n}} <{P}_{{n}+\mathrm{1}} \\ $$$$\:\frac{\mathrm{18}{n}\left({n}−\mathrm{1}\right)}{\left({n}+\mathrm{6}\right)\left({n}+\mathrm{5}\right)\left({n}+\mathrm{4}\right)}\:<\frac{\mathrm{18}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\left({n}+\mathrm{5}\right)\left({n}+\mathrm{4}\right)\left({n}+\mathrm{3}\right)} \\ $$$$\:\frac{{n}}{{n}+\mathrm{6}}\:<\frac{{n}−\mathrm{2}}{{n}+\mathrm{3}} \\ $$$$\Rightarrow{n}>\mathrm{12} \\ $$$${i}.{e}.\:{upon}\:{n}=\mathrm{13},\:{P}_{{n}} <{P}_{{n}+\mathrm{1}} \\ $$$$\Rightarrow{P}_{\mathrm{12}} \:{is}\:{maximum}. \\ $$$${we}\:{don}'{t}\:{need}\:{to}\:{know}\:{whether}\:{P}_{\mathrm{11}} \\ $$$${is}\:{also}\:{maximum}. \\ $$

Commented by Acem last updated on 12/Oct/22

  In fact the ((18(n−1)(n−2))/((n+5)(n+4)(n+3))) is not P_(n+1)   Also, when we want to set n which make P_(max)    it must be P_(n, max)  greater than term before   and after it i.e.    P_(n_max) ≥ P_(n+1)  & P_(n_max) ≥ P_(n−1)    Finally i say that n≤12 is not enough   because 12 red balls makes P_(max)    and also 11 red balls does    In addition to that, the n≤12 makes the   student illusion that all values less   than 12 make P_(max)

$$ \\ $$$${In}\:{fact}\:{the}\:\frac{\mathrm{18}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\left({n}+\mathrm{5}\right)\left({n}+\mathrm{4}\right)\left({n}+\mathrm{3}\right)}\:{is}\:{not}\:{P}_{{n}+\mathrm{1}} \\ $$$${Also},\:{when}\:{we}\:{want}\:{to}\:{set}\:{n}\:{which}\:{make}\:{P}_{{max}} \\ $$$$\:{it}\:{must}\:{be}\:{P}_{{n},\:{max}} \:{greater}\:{than}\:{term}\:{before} \\ $$$$\:{and}\:{after}\:{it}\:{i}.{e}.\: \\ $$$$\:{P}_{{n\_max}} \geqslant\:{P}_{{n}+\mathrm{1}} \:\&\:{P}_{{n\_max}} \geqslant\:{P}_{{n}−\mathrm{1}} \\ $$$$\:{Finally}\:{i}\:{say}\:{that}\:{n}\leqslant\mathrm{12}\:{is}\:{not}\:{enough} \\ $$$$\:{because}\:\mathrm{12}\:{red}\:{balls}\:{makes}\:{P}_{{max}} \\ $$$$\:{and}\:{also}\:\mathrm{11}\:{red}\:{balls}\:{does} \\ $$$$ \\ $$$${In}\:{addition}\:{to}\:{that},\:{the}\:{n}\leqslant\mathrm{12}\:{makes}\:{the} \\ $$$$\:{student}\:{illusion}\:{that}\:{all}\:{values}\:{less} \\ $$$$\:{than}\:\mathrm{12}\:{make}\:{P}_{{max}} \\ $$$$\: \\ $$

Commented by mr W last updated on 12/Oct/22

as i said when we only need to get P_(n,max)   it′s enough to know that P_(12)  the  maximum. we don′t need to care  whether P_(11)  is also maximum.  from   P_1 ≤P_2 ≤P_3 ≤....≤P_(11) ≤P_(12) >P_(13) >P_(14) >...  we can be sure that P_(12)  is the maximum.  it is not said that only P_(12)  is the  maximum, but this is for the  question not important.

$${as}\:{i}\:{said}\:{when}\:{we}\:{only}\:{need}\:{to}\:{get}\:{P}_{{n},{max}} \\ $$$${it}'{s}\:{enough}\:{to}\:{know}\:{that}\:{P}_{\mathrm{12}} \:{the} \\ $$$${maximum}.\:{we}\:{don}'{t}\:{need}\:{to}\:{care} \\ $$$${whether}\:{P}_{\mathrm{11}} \:{is}\:{also}\:{maximum}. \\ $$$${from}\: \\ $$$${P}_{\mathrm{1}} \leqslant{P}_{\mathrm{2}} \leqslant{P}_{\mathrm{3}} \leqslant....\leqslant{P}_{\mathrm{11}} \leqslant{P}_{\mathrm{12}} >{P}_{\mathrm{13}} >{P}_{\mathrm{14}} >... \\ $$$${we}\:{can}\:{be}\:{sure}\:{that}\:{P}_{\mathrm{12}} \:{is}\:{the}\:{maximum}. \\ $$$${it}\:{is}\:{not}\:{said}\:{that}\:{only}\:{P}_{\mathrm{12}} \:{is}\:{the} \\ $$$${maximum},\:{but}\:{this}\:{is}\:{for}\:{the} \\ $$$${question}\:{not}\:{important}. \\ $$

Commented by Acem last updated on 13/Oct/22

   It′s ok and good

$$\: \\ $$$${It}'{s}\:{ok}\:{and}\:{good} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com