Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 177900 by yaslm last updated on 10/Oct/22

Answered by Ar Brandon last updated on 11/Oct/22

I_n =∫_0 ^(π/2) sin^n xdx  I_(n+2) =∫_0 ^(π/2) sin^(n+2) xdx           =∫_0 ^(π/2) sin^n xsin^2 xdx=∫_0 ^(π/2) sin^n x(1−cos^2 x)dx            =∫_0 ^(π/2) sin^n xdx−∫_0 ^(π/2) sin^n xcos^2 xdx           =I_n −∫_0 ^(π/2) (sin^n xcosx)cosxdx           =I_n −[((sin^(n+1) x)/(n+1))cosx]_0 ^(π/2) −(1/(n+1))∫_0 ^(π/2) (sin^(n+1) x)sinxdx           =I_n −(1/(n+1))∫_0 ^(π/2) sin^(n+2) xdx=I_n −(1/(n+1))I_(n+2)   ⇒(1+(1/(n+1)))I_(n+2) =I_n  ⇒(((n+2)/(n+1)))I_(n+2) =I_n  ⇒I_(n+2) =((n+1)/(n+2))I_n   ⇒I_(2n) =((2n−1)/(2n))I_(2n−2) =((2n−1)/(2n))∙((2n−3)/(2n−2))∙((2n−5)/(2n−4))∙∙∙(3/4)∙(1/2)I_0   I_0 =∫_0 ^(π/2) (sinx)^0 dx=∫_0 ^(π/2) dx=(π/2)  ⇒I_(2n) =((2n−1)/(2n))∙((2n−3)/(2n−2))∙((2n−5)/(2n−4))∙∙∙(3/4)∙(1/2)∙(π/2)

In=0π2sinnxdxIn+2=0π2sinn+2xdx=0π2sinnxsin2xdx=0π2sinnx(1cos2x)dx=0π2sinnxdx0π2sinnxcos2xdx=In0π2(sinnxcosx)cosxdx=In[sinn+1xn+1cosx]0π21n+10π2(sinn+1x)sinxdx=In1n+10π2sinn+2xdx=In1n+1In+2(1+1n+1)In+2=In(n+2n+1)In+2=InIn+2=n+1n+2InI2n=2n12nI2n2=2n12n2n32n22n52n43412I0I0=0π2(sinx)0dx=0π2dx=π2I2n=2n12n2n32n22n52n43412π2

Commented by yaslm last updated on 11/Oct/22

thank you so much

Terms of Service

Privacy Policy

Contact: info@tinkutara.com