Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 177957 by infinityaction last updated on 11/Oct/22

let  a > 0 find the sum of the infinite   series   1 + (((loga)^2  )/(2!)) + (((loga)^4  )/(4!)) + (((loga)^6  )/(6!))...

$$\mathrm{let}\:\:\mathrm{a}\:>\:\mathrm{0}\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{infinite}\: \\ $$ $$\mathrm{series} \\ $$ $$\:\mathrm{1}\:+\:\frac{\left(\mathrm{loga}\right)^{\mathrm{2}} \:}{\mathrm{2}!}\:+\:\frac{\left(\mathrm{loga}\right)^{\mathrm{4}} \:}{\mathrm{4}!}\:+\:\frac{\left(\mathrm{loga}\right)^{\mathrm{6}} \:}{\mathrm{6}!}... \\ $$

Answered by mr W last updated on 11/Oct/22

e^x =1+(x/(1!))+(x^2 /(2!))+(x^3 /(3!))+...  e^(−x) =1−(x/(1!))+(x^2 /(2!))−(x^3 /(3!))+...  e^x +e^(−x) =2(1+(x^2 /(2!))+(x^4 /(4!))+...)  ((e^x +e^(−x) )/2)=1+(x^2 /(2!))+(x^4 /(4!))+...  with x=log a  ((a+(1/a))/2)=1+(((log a)^2 )/(2!))+(((log a)^4 )/(4!))+...  ⇒1+(((log a)^2 )/(2!))+(((log a)^4 )/(4!))+...=((a^2 +1)/(2a))

$${e}^{{x}} =\mathrm{1}+\frac{{x}}{\mathrm{1}!}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+... \\ $$ $${e}^{−{x}} =\mathrm{1}−\frac{{x}}{\mathrm{1}!}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+... \\ $$ $${e}^{{x}} +{e}^{−{x}} =\mathrm{2}\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}!}+...\right) \\ $$ $$\frac{{e}^{{x}} +{e}^{−{x}} }{\mathrm{2}}=\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}!}+... \\ $$ $${with}\:{x}=\mathrm{log}\:{a} \\ $$ $$\frac{{a}+\frac{\mathrm{1}}{{a}}}{\mathrm{2}}=\mathrm{1}+\frac{\left(\mathrm{log}\:{a}\right)^{\mathrm{2}} }{\mathrm{2}!}+\frac{\left(\mathrm{log}\:{a}\right)^{\mathrm{4}} }{\mathrm{4}!}+... \\ $$ $$\Rightarrow\mathrm{1}+\frac{\left(\mathrm{log}\:{a}\right)^{\mathrm{2}} }{\mathrm{2}!}+\frac{\left(\mathrm{log}\:{a}\right)^{\mathrm{4}} }{\mathrm{4}!}+...=\frac{{a}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{a}} \\ $$

Commented byinfinityaction last updated on 11/Oct/22

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented byTawa11 last updated on 11/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by Ar Brandon last updated on 11/Oct/22

1+(x^2 /(2!))+(x^4 /(4!))+(x^6 /(6!))+∙∙∙=cosh(x)  ⇒1+(((loga)^2 )/(2!))+(((loga)^4 )/(4!))+(((loga)^6 )/(6!))+∙∙∙=cosh(loga)       =(1/2)(e^(loga) +e^(−loga) )=(1/2)(a+(1/a))=((a^2 +1)/(2a))

$$\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}!}+\frac{{x}^{\mathrm{6}} }{\mathrm{6}!}+\centerdot\centerdot\centerdot=\mathrm{cosh}\left({x}\right) \\ $$ $$\Rightarrow\mathrm{1}+\frac{\left(\mathrm{log}{a}\right)^{\mathrm{2}} }{\mathrm{2}!}+\frac{\left(\mathrm{log}{a}\right)^{\mathrm{4}} }{\mathrm{4}!}+\frac{\left(\mathrm{log}{a}\right)^{\mathrm{6}} }{\mathrm{6}!}+\centerdot\centerdot\centerdot=\mathrm{cosh}\left(\mathrm{log}{a}\right) \\ $$ $$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left({e}^{\mathrm{log}{a}} +{e}^{−\mathrm{log}{a}} \right)=\frac{\mathrm{1}}{\mathrm{2}}\left({a}+\frac{\mathrm{1}}{{a}}\right)=\frac{{a}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{a}} \\ $$

Commented byTawa11 last updated on 11/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com