Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 178246 by mnjuly1970 last updated on 14/Oct/22

Answered by CElcedricjunior last updated on 14/Oct/22

𝛀=∫_0 ^∞ ((ln^2 (x))/(1+2x+2x^2 ))dx=(𝛑/(64))(a𝛇(2)+bln^2 (2))  𝛀=∫_0 ^∞ ((ln^2 (x))/(1+2x+2x^2 ))=∫_0 ^∞ ((ln^2 (x))/(2[(x+(1/2))^2 +(1/4)]))dx  𝛀=2∫_0 ^∞ ((ln^2 (x))/((2x+1)^2 +1))dx  posons 2x+1=tana=>x=(1/2)(tanaβˆ’1)  =>dx=(1/2)(1+tan^2 a)da     qd:   { ((xβˆ’>0)),((xβˆ’>∞)) :}=> { ((aβˆ’>(𝛑/4))),((aβˆ’>(𝛑/2))) :}  =>𝛀=2∫_(Ο€/4) ^(Ο€/2) ln^2 ((1/2)(tanaβˆ’1))dx  =>𝛀=2∫_(𝛑/4) ^(𝛑/2) ln^2 ((1/2))da+2∫_(Ο€/4) ^(Ο€/2) ln^2 (tanaβˆ’1)da  =>𝛀=(𝛑/2)ln^2 (2)+2∫_(𝛑/4) ^(𝛑/2) ln^2 (tanaβˆ’1)da  on  a I=2∫_(𝛑/4) ^(𝛑/2) ln^2 (tanaβˆ’1)da  posons tana=x=>da=(dx/(1+x^2 ))  =>I=2∫_1 ^∞ ((ln^2 (xβˆ’1))/(1+x^2 ))dx=2∫_1 ^∞ (1/(1+x^2 )).𝛇(2)dx  I=2𝛇(2)∫_1 ^∞ (dx/(1+x^2 ))=2𝛇(2)[a]_(𝛑/4) ^(𝛑/2)   I=((𝛑𝛇(2))/2)  =>𝛀=(𝛑/2)(𝛇(2)+ln^2 (2))  =>𝛀=(𝛑/(64))(32ln^2 (2)+32𝛇(2))    ...............le celebre cedric junior.........

Ξ©=∫0∞ln2(x)1+2x+2x2dx=Ο€64(aΞΆ(2)+bln2(2))Ξ©=∫0∞ln2(x)1+2x+2x2=∫0∞ln2(x)2[(x+12)2+14]dxΞ©=2∫0∞ln2(x)(2x+1)2+1dxposons2x+1=tana=>x=12(tanaβˆ’1)=>dx=12(1+tan2a)daqd:{xβˆ’>0xβˆ’>∞=>{aβˆ’>Ο€4aβˆ’>Ο€2=>Ξ©=2βˆ«Ο€/4Ο€/2ln2(12(tanaβˆ’1))dx=>Ξ©=2βˆ«Ο€/4Ο€/2ln2(12)da+2βˆ«Ο€/4Ο€/2ln2(tanaβˆ’1)da=>Ξ©=Ο€2ln2(2)+2βˆ«Ο€/4Ο€/2ln2(tanaβˆ’1)daonaI=2βˆ«Ο€/4Ο€/2ln2(tanaβˆ’1)daposonstana=x=>da=dx1+x2=>I=2∫1∞ln2(xβˆ’1)1+x2dx=2∫1∞11+x2.ΞΆ(2)dxI=2ΞΆ(2)∫1∞dx1+x2=2ΞΆ(2)[a]Ο€/4Ο€/2I=π΢(2)2=>Ξ©=Ο€2(ΞΆ(2)+ln2(2))=>Ξ©=Ο€64(32ln2(2)+32ΞΆ(2))...............lecelebrecedricjunior.........

Commented by mnjuly1970 last updated on 14/Oct/22

thanks alot

thanksalot

Commented by Tawa11 last updated on 14/Oct/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com