All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 178246 by mnjuly1970 last updated on 14/Oct/22
Answered by CElcedricjunior last updated on 14/Oct/22
Ξ©=β«0βln2(x)1+2x+2x2dx=Ο64(aΞΆ(2)+bln2(2))Ξ©=β«0βln2(x)1+2x+2x2=β«0βln2(x)2[(x+12)2+14]dxΞ©=2β«0βln2(x)(2x+1)2+1dxposons2x+1=tana=>x=12(tanaβ1)=>dx=12(1+tan2a)daqd:{xβ>0xβ>β=>{aβ>Ο4aβ>Ο2=>Ξ©=2β«Ο/4Ο/2ln2(12(tanaβ1))dx=>Ξ©=2β«Ο/4Ο/2ln2(12)da+2β«Ο/4Ο/2ln2(tanaβ1)da=>Ξ©=Ο2ln2(2)+2β«Ο/4Ο/2ln2(tanaβ1)daonaI=2β«Ο/4Ο/2ln2(tanaβ1)daposonstana=x=>da=dx1+x2=>I=2β«1βln2(xβ1)1+x2dx=2β«1β11+x2.ΞΆ(2)dxI=2ΞΆ(2)β«1βdx1+x2=2ΞΆ(2)[a]Ο/4Ο/2I=ΟΞΆ(2)2=>Ξ©=Ο2(ΞΆ(2)+ln2(2))=>Ξ©=Ο64(32ln2(2)+32ΞΆ(2))...............lecelebrecedricjunior.........
Commented by mnjuly1970 last updated on 14/Oct/22
thanksalot
Commented by Tawa11 last updated on 14/Oct/22
Greatsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com