Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 178282 by Sheshdevsahu last updated on 14/Oct/22

  find unit digit of   1^1 +2^2 +3^3 +.......+63^(63) +64^(64)

findunitdigitof11+22+33+.......+6363+6464

Answered by mr W last updated on 14/Oct/22

(...0)^n =...0  10^(10) +20^(20) +30^(30) +40^(49) +50^(50) +60^(60) =...0  (...1)^n =...1  1^1 +11^(11) +21^(21) +31^(31) +41^(41) +51^(51) +61^(61) =...1×7=...7  (...5)^n =...5  5^5 +15^(15) +25^(25) +35^(35) +45^(45) +55^(55) =...5×6=...0  (...6)^n =...6  6^6 +16^(16) +26^(26) +36^(36) +46^(46) +56^(56) =...6×6=...6  (...2)^(4n+1/2/3/4) =...2/4/8/6  2^2 +12^(12) +22^(22) +32^(32) +42^(42) +52^(52) +62^(62) =...4+6+4+6+4+6+4=...4  (...3)^(4n+1/2/3/4) =...3/9/7/1  3^3 +13^(13) +23^(23) +33^(33) +43^(43) +53^(53) +63^(63) =...7+3+7+3+7+3+7=...7  (...4)^(2n+1/2) =...4/6  4^4 +14^(14) +24^(24) +34^(34) +44^(44) +54^(54) +64^(64) =...6×7=...2  (...7)^(4n+1/2/3/4) =...7/9/3/1  7^7 +17^(17) +27^(27) +37^(37) +47^(47) +57^(57) =...3+7+3+7+3+7=...0  (...8)^(4n+1/2/3/4) =...8/4/2/6  8^8 +18^(18) +28^(28) +38^(38) +48^(48) +58^(58) =...6+4+6+4+6+4=...0  (...9)^(2n+1/2) =...9/1  9^9 +19^(19) +29^(29) +39^(39) +49^(49) +59^(59) =...9×6=...4    1^1 +2^2 +...+64^(64) =...0+7+0+6+4+7+2+0+0+4=...0

(...0)n=...01010+2020+3030+4049+5050+6060=...0(...1)n=...111+1111+2121+3131+4141+5151+6161=...1×7=...7(...5)n=...555+1515+2525+3535+4545+5555=...5×6=...0(...6)n=...666+1616+2626+3636+4646+5656=...6×6=...6(...2)4n+1/2/3/4=...2/4/8/622+1212+2222+3232+4242+5252+6262=...4+6+4+6+4+6+4=...4(...3)4n+1/2/3/4=...3/9/7/133+1313+2323+3333+4343+5353+6363=...7+3+7+3+7+3+7=...7(...4)2n+1/2=...4/644+1414+2424+3434+4444+5454+6464=...6×7=...2(...7)4n+1/2/3/4=...7/9/3/177+1717+2727+3737+4747+5757=...3+7+3+7+3+7=...0(...8)4n+1/2/3/4=...8/4/2/688+1818+2828+3838+4848+5858=...6+4+6+4+6+4=...0(...9)2n+1/2=...9/199+1919+2929+3939+4949+5959=...9×6=...411+22+...+6464=...0+7+0+6+4+7+2+0+0+4=...0

Commented by mr W last updated on 14/Oct/22

maybe there are better ways.

maybetherearebetterways.

Commented by Tawa11 last updated on 14/Oct/22

Great sir

Greatsir

Commented by mr W last updated on 14/Oct/22

Answered by mahdipoor last updated on 14/Oct/22

lemma I:  (20+n)^((20+n)) ≡^(10) n^(20+n) ≡^(10) n^n      ⇒A≡1^1 +...64^(64) ≡        mod 10  (1^1 +...+20^(20) )+(21^(21) +...40^(40) )+(41^(41) +...+60^(60) )  +61^(61) +62^(62) +63^(63) +64^(64)   ≡3×(1^1 +...+20^(20) )+1^1 +2^2 +3^3 +4^4      lemma II:  1^1 +....+20^(20) ≡      mod 10  (1^1 +11^(11) )+(2^2 +12^(12) )+...+(10^(10) +20^(20) )≡5  lemma I + II :  ⇒A≡3×5+1+4+7+6≡3     mod 10

lemmaI:(20+n)(20+n)10n20+n10nnA11+...6464mod10(11+...+2020)+(2121+...4040)+(4141+...+6060)+6161+6262+6363+64643×(11+...+2020)+11+22+33+44lemmaII:11+....+2020mod10(11+1111)+(22+1212)+...+(1010+2020)5lemmaI+II:A3×5+1+4+7+63mod10

Terms of Service

Privacy Policy

Contact: info@tinkutara.com