Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 178487 by cortano1 last updated on 17/Oct/22

                ∫ (dx/(cot^3 x sin^7 x)) =?

dxcot3xsin7x=?

Answered by Frix last updated on 18/Oct/22

∫(dx/(cot^3  x sin^7  x))=∫(dx/(cos^3  x sin^4  x))=^(t=sin x)   =∫(dt/(t^4 (t^2 −1)^2 ))=_(Method) ^(Ostrogradski′s)   =−((15t^4 −10t^2 −2)/(6t^3 (t^2 −1)))+(5/4)∫((1/(t+1))−(1/(t+1)))dt=  =−((15t^4 −10t^2 −2)/(6t^3 (t^2 −1)))+((5ln ((t+1)/(t−1)))/4)=  =((15sin^4  x −10sin^2  x −2)/(6cos^2  x sin^3  x))+(5/4)ln ((1+sin x)/(1−sin x)) +C

dxcot3xsin7x=dxcos3xsin4x=t=sinx=dtt4(t21)2=OstrogradskisMethod=15t410t226t3(t21)+54(1t+11t+1)dt==15t410t226t3(t21)+5lnt+1t14==15sin4x10sin2x26cos2xsin3x+54ln1+sinx1sinx+C

Answered by Ar Brandon last updated on 17/Oct/22

I=∫(dx/(cot^3 xsin^7 x))=∫(dx/(cos^3 xsin^4 x))=∫((sec^7 x)/(tan^4 x))dx    =−((sec^5 x)/(3tan^3 x))+(5/3)∫((sec^5 x)/(tan^2 x))dx=−((sec^5 x)/(3tan^3 x))−((5sec^3 x)/(3tanx))+5∫sec^3 xdx    =−((sec^5 x)/(3tanx))−((5sec^3 x)/(3tanx))+5∫((cosx)/(cos^4 x))dx=−((sec^5 x)/(3tanx))−((5sec^3 x)/(3tanx))+5∫((cosx)/((1−sin^2 x)^2 ))dx    =−((sec^5 x)/(3tanx))−((5sec^3 x)/(3tanx))+(5/4)∫((1/((1−sinx)^2 ))+(2/(1−sin^2 x))+(1/((1+sinx)^2 )))d(sinx)    =−((sec^5 x)/(3tanx))−((5sec^3 x)/(3tanx))+(5/4)((1/(1−sinx))+2tanx−(1/(1+sinx)))+C    =−((sec^5 x)/(3tanx))−((5sec^3 x)/(3tanx))+(5/2)secxtanx+(5/2)tanx+C

I=dxcot3xsin7x=dxcos3xsin4x=sec7xtan4xdx=sec5x3tan3x+53sec5xtan2xdx=sec5x3tan3x5sec3x3tanx+5sec3xdx=sec5x3tanx5sec3x3tanx+5cosxcos4xdx=sec5x3tanx5sec3x3tanx+5cosx(1sin2x)2dx=sec5x3tanx5sec3x3tanx+54(1(1sinx)2+21sin2x+1(1+sinx)2)d(sinx)=sec5x3tanx5sec3x3tanx+54(11sinx+2tanx11+sinx)+C=sec5x3tanx5sec3x3tanx+52secxtanx+52tanx+C

Answered by greougoury555 last updated on 18/Oct/22

 let s=sin x   I= ∫ (ds/((1−s^2 )^2 s^4 )) =∫ (ds/(((1−s^2 )s^2 )^2 ))  Partial fractions    (1/([(1−s^2 )s^2  ]^2 )) = ((1/(1−s^2 )) +(1/s^2 ))^2     = ((1/(1−s^2 )))^2 +(2/((1−s^2 )s^2 )) +(1/s^4 )   = [ (1/2)((1/(1−s)) +(1/(1+s)))]^2 +(2/(1−s^2 )) +(2/s^2 )+(1/s^4 )   = (1/(4(1−s)^2 )) +(5/(2(1−s^2 )))+(1/(4(1+s)^2 ))+(2/s^2 )+(1/s^4 )   I=∫ (ds/((1−s^2 )^2 s^4 )) = ∫ [ (1/(4(1−s)^2 )) +(5/(2(1−s^2 )))+(1/(4(1+s)^2 ))+(2/s^2 )+(1/s^4 ) ]ds   = (1/(4(1−s)))+(5/4) ln ∣((1+s)/(1−s)) ∣−(1/(4(1+s)))−(2/s)−(1/(3s^3 )) +c   = (1/(4(1−sin x))) +(5/4) ln ∣((1+sin x)/(1−sin x))∣−(1/(4(1+sin x)))−(2/(sin x))−(1/(3sin^3 x)) + c

lets=sinxI=ds(1s2)2s4=ds((1s2)s2)2Partialfractions1[(1s2)s2]2=(11s2+1s2)2=(11s2)2+2(1s2)s2+1s4=[12(11s+11+s)]2+21s2+2s2+1s4=14(1s)2+52(1s2)+14(1+s)2+2s2+1s4I=ds(1s2)2s4=[14(1s)2+52(1s2)+14(1+s)2+2s2+1s4]ds=14(1s)+54ln1+s1s14(1+s)2s13s3+c=14(1sinx)+54ln1+sinx1sinx14(1+sinx)2sinx13sin3x+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com