Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 178522 by peter frank last updated on 17/Oct/22

Answered by MJS_new last updated on 17/Oct/22

y=e^x >0  4y^4 +y^3 −6y^2 +y+1=0  this has no “nice” solution  y≈1.09783726106  ⇒ x≈.0933421181361

$${y}=\mathrm{e}^{{x}} >\mathrm{0} \\ $$$$\mathrm{4}{y}^{\mathrm{4}} +{y}^{\mathrm{3}} −\mathrm{6}{y}^{\mathrm{2}} +{y}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{this}\:\mathrm{has}\:\mathrm{no}\:``\mathrm{nice}''\:\mathrm{solution} \\ $$$${y}\approx\mathrm{1}.\mathrm{09783726106} \\ $$$$\Rightarrow\:{x}\approx.\mathrm{0933421181361} \\ $$

Commented by peter frank last updated on 18/Oct/22

more clarification please step 3

$$\mathrm{more}\:\mathrm{clarification}\:\mathrm{please}\:\mathrm{step}\:\mathrm{3} \\ $$

Commented by MJS_new last updated on 18/Oct/22

4y^4 +y^3 −6y^2 +y+1=0  y^4 +(1/4)y^3 −(3/2)y^2 +(1/4)y+(1/4)=0  y=z−(1/(16))  z^4 −((195)/(128))z^2 +((225)/(512))z+((14973)/(65536))=0  we can solve this finding α, β, γ  (z^2 −αz−β)(z^2 +αz−γ)=0  z^4 −(α^2 +β+γ)z^2 −α(β−γ)z+βγ=0  ⇔  −(α^2 +β+γ)=−((195)/(128))  −α(β−γ)=((225)/(512))  βγ=((14973)/(65536))  solve the 1^(st)  for γ, then the 2^(nd)  for β, the 3^(rd)   becomes  α^6 −((195)/(64))α^4 +((5763)/(4096))α^2 −((50625)/(262144))=0  α=(√(u+((65)/(64))))  u^3 −((27)/(16))u−((55)/(64))=0  this has no “nice” solution ⇒ we cannot use  the exact solution for y

$$\mathrm{4}{y}^{\mathrm{4}} +{y}^{\mathrm{3}} −\mathrm{6}{y}^{\mathrm{2}} +{y}+\mathrm{1}=\mathrm{0} \\ $$$${y}^{\mathrm{4}} +\frac{\mathrm{1}}{\mathrm{4}}{y}^{\mathrm{3}} −\frac{\mathrm{3}}{\mathrm{2}}{y}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}{y}+\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{0} \\ $$$${y}={z}−\frac{\mathrm{1}}{\mathrm{16}} \\ $$$${z}^{\mathrm{4}} −\frac{\mathrm{195}}{\mathrm{128}}{z}^{\mathrm{2}} +\frac{\mathrm{225}}{\mathrm{512}}{z}+\frac{\mathrm{14973}}{\mathrm{65536}}=\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{finding}\:\alpha,\:\beta,\:\gamma \\ $$$$\left({z}^{\mathrm{2}} −\alpha{z}−\beta\right)\left({z}^{\mathrm{2}} +\alpha{z}−\gamma\right)=\mathrm{0} \\ $$$${z}^{\mathrm{4}} −\left(\alpha^{\mathrm{2}} +\beta+\gamma\right){z}^{\mathrm{2}} −\alpha\left(\beta−\gamma\right){z}+\beta\gamma=\mathrm{0} \\ $$$$\Leftrightarrow \\ $$$$−\left(\alpha^{\mathrm{2}} +\beta+\gamma\right)=−\frac{\mathrm{195}}{\mathrm{128}} \\ $$$$−\alpha\left(\beta−\gamma\right)=\frac{\mathrm{225}}{\mathrm{512}} \\ $$$$\beta\gamma=\frac{\mathrm{14973}}{\mathrm{65536}} \\ $$$$\mathrm{solve}\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{for}\:\gamma,\:\mathrm{then}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{for}\:\beta,\:\mathrm{the}\:\mathrm{3}^{\mathrm{rd}} \\ $$$$\mathrm{becomes} \\ $$$$\alpha^{\mathrm{6}} −\frac{\mathrm{195}}{\mathrm{64}}\alpha^{\mathrm{4}} +\frac{\mathrm{5763}}{\mathrm{4096}}\alpha^{\mathrm{2}} −\frac{\mathrm{50625}}{\mathrm{262144}}=\mathrm{0} \\ $$$$\alpha=\sqrt{{u}+\frac{\mathrm{65}}{\mathrm{64}}} \\ $$$${u}^{\mathrm{3}} −\frac{\mathrm{27}}{\mathrm{16}}{u}−\frac{\mathrm{55}}{\mathrm{64}}=\mathrm{0} \\ $$$$\mathrm{this}\:\mathrm{has}\:\mathrm{no}\:``\mathrm{nice}''\:\mathrm{solution}\:\Rightarrow\:\mathrm{we}\:\mathrm{cannot}\:\mathrm{use} \\ $$$$\mathrm{the}\:\mathrm{exact}\:\mathrm{solution}\:\mathrm{for}\:{y} \\ $$

Commented by peter frank last updated on 22/Oct/22

thanks

$$\mathrm{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com