Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 178596 by Acem last updated on 18/Oct/22

Let (√a)+ (√b)= (√(2023))   , Find values of a, b ∈ N

$${Let}\:\sqrt{{a}}+\:\sqrt{{b}}=\:\sqrt{\mathrm{2023}}\:\:\:,\:{Find}\:{values}\:{of}\:{a},\:{b}\:\in\:\mathbb{N} \\ $$

Commented by mr W last updated on 18/Oct/22

a=7(17−n)^2   b=7n^2   with n=1,2,...,16

$${a}=\mathrm{7}\left(\mathrm{17}−{n}\right)^{\mathrm{2}} \\ $$$${b}=\mathrm{7}{n}^{\mathrm{2}} \\ $$$${with}\:{n}=\mathrm{1},\mathrm{2},...,\mathrm{16} \\ $$

Commented by Acem last updated on 18/Oct/22

I like elegant solutions!    Tmorrow i will try this qusetion

$${I}\:{like}\:{elegant}\:{solutions}! \\ $$$$ \\ $$$${Tmorrow}\:{i}\:{will}\:{try}\:{this}\:{qusetion} \\ $$

Commented by mr W last updated on 19/Oct/22

since 2023=7×17^2 , so in this case  the solution is very obvious.  (√a)+(√b)=17(√7)  a=7A^2 , b=7B^2   A+B=17  let B=n, then A=17−n  ⇒a=7(17−n)^2 , b=7n^2

$${since}\:\mathrm{2023}=\mathrm{7}×\mathrm{17}^{\mathrm{2}} ,\:{so}\:{in}\:{this}\:{case} \\ $$$${the}\:{solution}\:{is}\:{very}\:{obvious}. \\ $$$$\sqrt{{a}}+\sqrt{{b}}=\mathrm{17}\sqrt{\mathrm{7}} \\ $$$${a}=\mathrm{7}{A}^{\mathrm{2}} ,\:{b}=\mathrm{7}{B}^{\mathrm{2}} \\ $$$${A}+{B}=\mathrm{17} \\ $$$${let}\:{B}={n},\:{then}\:{A}=\mathrm{17}−{n} \\ $$$$\Rightarrow{a}=\mathrm{7}\left(\mathrm{17}−{n}\right)^{\mathrm{2}} ,\:{b}=\mathrm{7}{n}^{\mathrm{2}} \\ $$

Commented by mr W last updated on 19/Oct/22

and we can also see  (√a)+(√b)=(√(2022)) has no solution, since  2022=2×3×337 which doesn′t contain  a perfect square.

$${and}\:{we}\:{can}\:{also}\:{see} \\ $$$$\sqrt{{a}}+\sqrt{{b}}=\sqrt{\mathrm{2022}}\:{has}\:{no}\:{solution},\:{since} \\ $$$$\mathrm{2022}=\mathrm{2}×\mathrm{3}×\mathrm{337}\:{which}\:{doesn}'{t}\:{contain} \\ $$$${a}\:{perfect}\:{square}. \\ $$

Answered by Rasheed.Sindhi last updated on 19/Oct/22

 { (((√a) +(√b) =17(√7) ....(i))),(((√a) −(√b) =u(√7) (say)....(ii))) :}[(√a) ,(√b) ≤17(√7) ]  (i)+(ii):  (√a) =(((17+u)(√7))/2)               a=((7(17+u)^2 )/4)≤; u∈O               a=((7(17+(2n+1))^2 )/4); n∈Z               a=((7(18+2n)^2 )/4); n∈Z   determinant ((( a=7(9+n)^2 ≤17(√7)  ; n∈Z)))  (i)−(ii):(√b) =(((17 −(2n+1))(√7))/2)               b=((7(17 −u)^2 )/4); u∈O               b=((7(17 −(2n+1))^2 )/4); n∈Z   determinant (((b=7(8 −n)^2 ≤17(√7) ; n∈Z)))   Continue....

$$\begin{cases}{\sqrt{{a}}\:+\sqrt{{b}}\:=\mathrm{17}\sqrt{\mathrm{7}}\:....\left({i}\right)}\\{\sqrt{{a}}\:−\sqrt{{b}}\:={u}\sqrt{\mathrm{7}}\:\left({say}\right)....\left({ii}\right)}\end{cases}\left[\sqrt{{a}}\:,\sqrt{{b}}\:\leqslant\mathrm{17}\sqrt{\mathrm{7}}\:\right] \\ $$$$\left({i}\right)+\left({ii}\right):\:\:\sqrt{{a}}\:=\frac{\left(\mathrm{17}+{u}\right)\sqrt{\mathrm{7}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{a}=\frac{\mathrm{7}\left(\mathrm{17}+{u}\right)^{\mathrm{2}} }{\mathrm{4}}\leqslant;\:{u}\in\mathbb{O} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{a}=\frac{\mathrm{7}\left(\mathrm{17}+\left(\mathrm{2}{n}+\mathrm{1}\right)\right)^{\mathrm{2}} }{\mathrm{4}};\:{n}\in\mathbb{Z} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{a}=\frac{\mathrm{7}\left(\mathrm{18}+\mathrm{2}{n}\right)^{\mathrm{2}} }{\mathrm{4}};\:{n}\in\mathbb{Z} \\ $$$$\begin{array}{|c|}{\:{a}=\mathrm{7}\left(\mathrm{9}+{n}\right)^{\mathrm{2}} \leqslant\mathrm{17}\sqrt{\mathrm{7}}\:\:;\:{n}\in\mathbb{Z}}\\\hline\end{array} \\ $$$$\left({i}\right)−\left({ii}\right):\sqrt{{b}}\:=\frac{\left(\mathrm{17}\:−\left(\mathrm{2}{n}+\mathrm{1}\right)\right)\sqrt{\mathrm{7}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{b}=\frac{\mathrm{7}\left(\mathrm{17}\:−{u}\right)^{\mathrm{2}} }{\mathrm{4}};\:{u}\in\mathbb{O} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{b}=\frac{\mathrm{7}\left(\mathrm{17}\:−\left(\mathrm{2}{n}+\mathrm{1}\right)\right)^{\mathrm{2}} }{\mathrm{4}};\:{n}\in\mathbb{Z} \\ $$$$\begin{array}{|c|}{{b}=\mathrm{7}\left(\mathrm{8}\:−{n}\right)^{\mathrm{2}} \leqslant\mathrm{17}\sqrt{\mathrm{7}}\:;\:{n}\in\mathbb{Z}}\\\hline\end{array}\: \\ $$$${Continue}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com