Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 17867 by Mr easymsn last updated on 11/Jul/17

prove that (2+(√3))^(2n) +(2−(√3))^(2n) is an  even integer and that (2+(√3))^(2n) −(2−(√3))^(2n) =w(√3)  for some integers w,for all integer n≥1.

provethat(2+3)2n+(23)2nisanevenintegerandthat(2+3)2n(23)2n=w3forsomeintegersw,forallintegern1.

Answered by alex041103 last updated on 11/Jul/17

We expand using  (a+b)^n =Σ_(k=0) ^n  ((n),(k) ) a^(n−k)  b^k   We get  (2+(√3))^(2n)  + (2−(√3))^(2n) =  =Σ_(k=0) ^(2n)  (((2n)),(( k)) ) 2^(2n−k) ((√3))^k [1+(−1)^k ]  When k≡1(mod 2)   (((2n)),(( k)) ) 2^(2n−k) ((√3))^k [1+(−1)^k ]=0  That′s why k≡0(mod 2)   ⇒(2+(√3))^(2n)  + (2−(√3))^(2n) =  =Σ_(k=0) ^n  (((2n)),(( 2k)) ) 2^(2n−2k) (3^(1/2) )^(2k) ×2  =2Σ_(k=0) ^n  (((2n)),(( 2k)) ) 2^(2n−2k) ×3^k   It′s easy to show that   Σ_(k=0) ^n  (((2n)),(( 2k)) ) 2^(2n−2k) ×3^k  ∈ N  ⇒(((2+(√3))^(2n) +(2−(√3))^(2n) )/2)∈N  The same procedure works for the next statement  (2+(√3))^(2n)  − (2−(√3))^(2n) =  =Σ_(k=0) ^(2n)  (((2n)),(( k)) ) 2^(2n−k) ((√3))^k [1+(−1)^(k+1) ]  Then we substitute k=2t+1 and  (2+(√3))^(2n)  − (2−(√3))^(2n) =  =Σ_(k=0) ^(n−1)  (((    2n)),(( 2k+1)) ) 2^(2n−2k) ((√3))3^k   =(√3)Σ_(k=0) ^(n−1)  (((    2n)),(( 2k+1)) ) 2^(2n−2k) 3^k   ⇒(2+(√3))^(2n)  − (2−(√3))^(2n) =w(√3), w∈N

Weexpandusing(a+b)n=nk=0(nk)ankbkWeget(2+3)2n+(23)2n==2nk=0(2nk)22nk(3)k[1+(1)k]Whenk1(mod2)(2nk)22nk(3)k[1+(1)k]=0Thatswhyk0(mod2)(2+3)2n+(23)2n==nk=0(2n2k)22n2k(31/2)2k×2=2nk=0(2n2k)22n2k×3kItseasytoshowthatnk=0(2n2k)22n2k×3kN(2+3)2n+(23)2n2NThesameprocedureworksforthenextstatement(2+3)2n(23)2n==2nk=0(2nk)22nk(3)k[1+(1)k+1]Thenwesubstitutek=2t+1and(2+3)2n(23)2n==n1k=0(2n2k+1)22n2k(3)3k=3n1k=0(2n2k+1)22n2k3k(2+3)2n(23)2n=w3,wN

Commented by alex041103 last updated on 12/Jul/17

Is there a problem, sir?

Isthereaproblem,sir?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com