Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 178697 by infinityaction last updated on 20/Oct/22

Commented by mr W last updated on 21/Oct/22

for a,b,c ∈R, i think  a+b+c≤2(√3)

$${for}\:{a},{b},{c}\:\in\mathbb{R},\:{i}\:{think} \\ $$$${a}+{b}+{c}\leqslant\mathrm{2}\sqrt{\mathrm{3}} \\ $$

Commented by mr W last updated on 21/Oct/22

i have being following this question  for some days. do you have the right  solution?

$${i}\:{have}\:{being}\:{following}\:{this}\:{question} \\ $$$${for}\:{some}\:{days}.\:{do}\:{you}\:{have}\:{the}\:{right} \\ $$$${solution}? \\ $$

Commented by mr W last updated on 21/Oct/22

i got the same result, as exact value.  above i mistook (a+b+c)_(max) =2(√3).   but it is only a local maximum from   k^2 =λ=12.   see solution below.

$${i}\:{got}\:{the}\:{same}\:{result},\:{as}\:{exact}\:{value}. \\ $$$${above}\:{i}\:{mistook}\:\left({a}+{b}+{c}\right)_{{max}} =\mathrm{2}\sqrt{\mathrm{3}}.\: \\ $$$${but}\:{it}\:{is}\:{only}\:{a}\:{local}\:{maximum}\:{from}\: \\ $$$${k}^{\mathrm{2}} =\lambda=\mathrm{12}.\: \\ $$$${see}\:{solution}\:{below}. \\ $$

Answered by mr W last updated on 22/Oct/22

(a+b+c)((1/a)+(1/b)+(1/c))−3=9  (a+b+c)(ab+bc+ca)=12abc  let a+b+c=k  abc=((k(ab+bc+ca))/(12))  (a+b+c)^2 =a^2 +b^2 +c^2 +2(ab+bc+ca)  k^2 =12+2(ab+bc+ca)  ab+bc+ca=((k^2 −12)/2)  abc=((k(k^2 −12))/(24))  a,b,c are roots of following cubic eqn.  z^3 −kz^2 +((k^2 −12)/2)z−((k(k^2 −12))/(24))=0  since a,b,c∈R, the eqn. must have  three real roots. we transform it to  t^3 +3pt+2q=0 with t=z−(k/3)  p=((k^2 −36)/(18))  q=((k(11k^2 −324))/(432))  p^3 +q^2 ≤0 to get 3 real roots  32(k^2 −36)^3 +k^2 (11k^2 −324)^2 ≤0  let k^2 =λ  (λ−12)(17λ^2 −972λ+13824)≤0  k_(max) ^2 =λ=((486+6(√(33)))/(17))  k_(max) =(√((486+6(√(33)))/(17)))  i.e. (a+b+c)_(max) =(√((486+6(√(33)))/(17)))≈5.533148

$$\left({a}+{b}+{c}\right)\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\right)−\mathrm{3}=\mathrm{9} \\ $$$$\left({a}+{b}+{c}\right)\left({ab}+{bc}+{ca}\right)=\mathrm{12}{abc} \\ $$$${let}\:{a}+{b}+{c}={k} \\ $$$${abc}=\frac{{k}\left({ab}+{bc}+{ca}\right)}{\mathrm{12}} \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{2}\left({ab}+{bc}+{ca}\right) \\ $$$${k}^{\mathrm{2}} =\mathrm{12}+\mathrm{2}\left({ab}+{bc}+{ca}\right) \\ $$$${ab}+{bc}+{ca}=\frac{{k}^{\mathrm{2}} −\mathrm{12}}{\mathrm{2}} \\ $$$${abc}=\frac{{k}\left({k}^{\mathrm{2}} −\mathrm{12}\right)}{\mathrm{24}} \\ $$$${a},{b},{c}\:{are}\:{roots}\:{of}\:{following}\:{cubic}\:{eqn}. \\ $$$${z}^{\mathrm{3}} −{kz}^{\mathrm{2}} +\frac{{k}^{\mathrm{2}} −\mathrm{12}}{\mathrm{2}}{z}−\frac{{k}\left({k}^{\mathrm{2}} −\mathrm{12}\right)}{\mathrm{24}}=\mathrm{0} \\ $$$${since}\:{a},{b},{c}\in{R},\:{the}\:{eqn}.\:{must}\:{have} \\ $$$${three}\:{real}\:{roots}.\:{we}\:{transform}\:{it}\:{to} \\ $$$${t}^{\mathrm{3}} +\mathrm{3}{pt}+\mathrm{2}{q}=\mathrm{0}\:{with}\:{t}={z}−\frac{{k}}{\mathrm{3}} \\ $$$${p}=\frac{{k}^{\mathrm{2}} −\mathrm{36}}{\mathrm{18}} \\ $$$${q}=\frac{{k}\left(\mathrm{11}{k}^{\mathrm{2}} −\mathrm{324}\right)}{\mathrm{432}} \\ $$$${p}^{\mathrm{3}} +{q}^{\mathrm{2}} \leqslant\mathrm{0}\:{to}\:{get}\:\mathrm{3}\:{real}\:{roots} \\ $$$$\mathrm{32}\left({k}^{\mathrm{2}} −\mathrm{36}\right)^{\mathrm{3}} +{k}^{\mathrm{2}} \left(\mathrm{11}{k}^{\mathrm{2}} −\mathrm{324}\right)^{\mathrm{2}} \leqslant\mathrm{0} \\ $$$${let}\:{k}^{\mathrm{2}} =\lambda \\ $$$$\left(\lambda−\mathrm{12}\right)\left(\mathrm{17}\lambda^{\mathrm{2}} −\mathrm{972}\lambda+\mathrm{13824}\right)\leqslant\mathrm{0} \\ $$$${k}_{{max}} ^{\mathrm{2}} =\lambda=\frac{\mathrm{486}+\mathrm{6}\sqrt{\mathrm{33}}}{\mathrm{17}} \\ $$$${k}_{{max}} =\sqrt{\frac{\mathrm{486}+\mathrm{6}\sqrt{\mathrm{33}}}{\mathrm{17}}} \\ $$$${i}.{e}.\:\left({a}+{b}+{c}\right)_{{max}} =\sqrt{\frac{\mathrm{486}+\mathrm{6}\sqrt{\mathrm{33}}}{\mathrm{17}}}\approx\mathrm{5}.\mathrm{533148} \\ $$

Commented by infinityaction last updated on 22/Oct/22

thanks sir

$${thanks}\:{sir} \\ $$

Commented by Tawa11 last updated on 23/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com