Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 178782 by peter frank last updated on 21/Oct/22

Answered by mr W last updated on 22/Oct/22

m(dv/dt)=mg sin θ−kmv^2   dt=(dv/(g sin θ−kv^2 ))  ∫_0 ^t dt=∫_0 ^v (dv/(g sin θ−kv^2 ))  ∫_0 ^t dt=∫_0 ^v ((d(kv))/(((√(kg sin θ)))^2 −(kv)^2 ))  t=(1/(2(√(kg sin θ))))[ln (((√(kg sin θ))+kv)/( (√(kg sin θ))−kv))]_0 ^v   2(√(kg sin θ)) t=ln (((√(kg sin θ))+kv)/( (√(kg sin θ))−kv))  e^(2(√(kg sin θ)) t) =(((√(kg sin θ))+kv)/( (√(kg sin θ))−kv))  let λ=(√(kg sin θ))  e^(2λ t) =((2λ)/( λ−kv))−1  (λ/k)(1−(2/( 1+e^(2λt) )))=v=(ds/dt)  (λ/k)(1−(2/( 1+e^(2λt) )))dt=ds  (λ/k)∫_0 ^t (1−(2/( 1+e^(2λt) )))dt=∫_0 ^d ds  t−∫_0 ^t (2/( 1+e^(2λt) ))dt=((kd)/λ)  t−(1/λ)∫_0 ^t ((d(2λt))/( 1+e^(2λt) ))=((kd)/λ)  t−(1/λ)[2λt−ln (1+e^(2λt) )]_0 ^t =((kd)/λ)  t−(1/λ)[2λt−ln (1+e^(2λt) )+ln 2]=((kd)/λ)  t−(1/λ)ln ((2e^(2λt) )/(1+e^(2λt) ))=((kd)/λ)  ln e^(λt) −ln ((2e^(2λt) )/(1+e^(2λt) ))=kd  ln (((1+e^(2λt) ))/(2e^(λt) ))=kd   ((1+e^(2λt) )/(2e^(λt) ))=e^(kd)   (e^(λt) )^2 −2e^(kd) e^(λt) +1=0  e^(λt) =e^(kd) +(√(e^(2kd) −1))  λt=ln (e^(kd) +(√(e^(2kd) −1)))=cosh^(−1)  (e^(kd) )  ⇒t=((cosh^(−1)  (e^(kd) ))/λ)  ⇒t=((cosh^(−1)  (e^(kd) ))/( (√(kg sin θ)))) ✓

mdvdt=mgsinθkmv2dt=dvgsinθkv20tdt=0vdvgsinθkv20tdt=0vd(kv)(kgsinθ)2(kv)2t=12kgsinθ[lnkgsinθ+kvkgsinθkv]0v2kgsinθt=lnkgsinθ+kvkgsinθkve2kgsinθt=kgsinθ+kvkgsinθkvletλ=kgsinθe2λt=2λλkv1λk(121+e2λt)=v=dsdtλk(121+e2λt)dt=dsλk0t(121+e2λt)dt=0ddst0t21+e2λtdt=kdλt1λ0td(2λt)1+e2λt=kdλt1λ[2λtln(1+e2λt)]0t=kdλt1λ[2λtln(1+e2λt)+ln2]=kdλt1λln2e2λt1+e2λt=kdλlneλtln2e2λt1+e2λt=kdln(1+e2λt)2eλt=kd1+e2λt2eλt=ekd(eλt)22ekdeλt+1=0eλt=ekd+e2kd1λt=ln(ekd+e2kd1)=cosh1(ekd)t=cosh1(ekd)λt=cosh1(ekd)kgsinθ

Commented by mr W last updated on 22/Oct/22

Commented by Tawa11 last updated on 22/Oct/22

Great sir

Greatsir

Commented by Spillover last updated on 22/Oct/22

Excellent solution Mr W

ExcellentsolutionMrW

Commented by peter frank last updated on 22/Oct/22

thanks

thanks

Answered by Spillover last updated on 22/Oct/22

F=ma  −kmv^2 +mgsin θ=ma  gsin θ−kv^2 =a  (dv/dt)=gsin θ−kv^2 =k[(g/k)sin θ−v^2 ]  dt=∫(dv/(k[(g/k)sin θ−v^2 ]))=(1/k)∫(dv/((g/k)sin θ−v^2 ))  dt=(1/k)∫(dv/((g/k)sin θ−v^2 ))=(1/k)∫(dv/( (√(((g/k)sin θ)^2 ))−v^2 ))  let β= (√((g/k)sin θ))   dt=(1/k)∫(dv/( (√(((g/k)sin θ)^2 ))−v^2 ))=(1/k)∫(dv/(β^2 −v^2 ))  t=(1/k).(1/β)tanh^(−1) ((v/β))+A  t=0   x=0    v=0  (v/β)=tanh (ktβ)   v=βtanh (ktβ)    v=βtanh (ktβ)     (dx/dt)=βtanh (ktβ)      dx=βtanh (ktβ) dt  ∫_0 ^d dx=∫βtanh (ktβ) dt    d=βln (([cosh (ktβ))/(kβ))  d=(1/k)ln cosh (ktβ)  kd=ln cosh (ktβ)  e^(kd) =cosh (ktβ)  cosh^(−1) (e^(kd) )=ktβ  t=(1/(kβ))cosh^(−1) (e^(kd) )  β= (√((g/k)sin θ))   t=(1/(k. (√((g/k)sin θ)) )).cosh^(−1) (e^(kd) )  t=((cosh^(−1) (e^(kd) ))/( (√(gksin θ))))

F=makmv2+mgsinθ=magsinθkv2=advdt=gsinθkv2=k[gksinθv2]dt=dvk[gksinθv2]=1kdvgksinθv2dt=1kdvgksinθv2=1kdv(gksinθ)2v2letβ=gksinθdt=1kdv(gksinθ)2v2=1kdvβ2v2t=1k.1βtanh1(vβ)+At=0x=0v=0vβ=tanh(ktβ)v=βtanh(ktβ)v=βtanh(ktβ)dxdt=βtanh(ktβ)dx=βtanh(ktβ)dt0ddx=βtanh(ktβ)dtd=βln[cosh(ktβ)kβd=1klncosh(ktβ)kd=lncosh(ktβ)ekd=cosh(ktβ)cosh1(ekd)=ktβt=1kβcosh1(ekd)β=gksinθt=1k.gksinθ.cosh1(ekd)t=cosh1(ekd)gksinθ

Commented by peter frank last updated on 22/Oct/22

great sir

greatsir

Commented by mr W last updated on 22/Oct/22

we can see you are a fan of hyperbolic  functions. that′s great!

wecanseeyouareafanofhyperbolicfunctions.thatsgreat!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com