Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 178890 by peter frank last updated on 22/Oct/22

Commented by mr W last updated on 22/Oct/22

without this red word your question is  not to understand properly.

$${without}\:{this}\:{red}\:{word}\:{your}\:{question}\:{is} \\ $$$${not}\:{to}\:{understand}\:{properly}. \\ $$

Commented by mr W last updated on 22/Oct/22

Answered by mr W last updated on 22/Oct/22

a=(dv/dt)=(ds/dt)×(dv/ds)=v(dv/ds)    motion upwards:  mv(dv/ds)=−mg−kmv^2   v(dv/ds)=−(g+kv^2 )  ((vdv)/(g+kv^2 ))=−ds  ∫_v_0  ^v ((vdv)/( g+kv^2 ))=−∫_0 ^s ds  ∫_v_0  ^v ((d(g+kv^2 ))/( g+kv^2 ))=−2k∫_0 ^s ds  ln ((g+kv^2 )/(g+kv_0 ^2 ))=−2ks  ⇒v^2 =(g/k)[(1+((kv_0 ^2 )/g))e^(−2ks) −1]  at s=h_(max) : v=0  0=(g/k)[(1+((kv_0 ^2 )/g))e^(−2kh_(max) ) −1]  ⇒e^(−2kh_(max) ) =(1/(1+((kv_0 ^2 )/g)))    motion downwards:  mv(dv/ds)=mg−kmv^2   ((vdv)/(g−kv^2 ))=ds  ∫_0 ^v ((d(g−kv^2 ))/(g−kv^2 ))=−2k∫_0 ^s ds  ln ((g−kv^2 )/g)=−2ks  1−((kv^2 )/g)=e^(−2ks)   v^2 =(g/k)(1−e^(−2ks) )  when s→∞, v→v_c =terminal speed  v_c ^2 =(g/k)(1−0)=(g/k)  when at initial position: s=h_(max)   v_1 ^2 =(g/k)(1−e^(−2kh_(max) ) )  v_1 ^2 =(g/k)(1−(1/(1+((kv_0 ^2 )/g))))  v_1 ^2 =((v_0 ^2 ×(g/k))/((g/k)+v_0 ^2 ))  since (g/k)=v_c ^2   ⇒v_1 ^2 =((v_0 ^2 v_c ^2 )/(v_c ^2 +v_0 ^2 ))  ⇒v_1 =((v_0 v_c )/( (√(v_0 ^2 +v_c ^2 )))) ✓

$${a}=\frac{{dv}}{{dt}}=\frac{{ds}}{{dt}}×\frac{{dv}}{{ds}}={v}\frac{{dv}}{{ds}} \\ $$$$ \\ $$$$\boldsymbol{{motion}}\:\boldsymbol{{upwards}}: \\ $$$${mv}\frac{{dv}}{{ds}}=−{mg}−{kmv}^{\mathrm{2}} \\ $$$${v}\frac{{dv}}{{ds}}=−\left({g}+{kv}^{\mathrm{2}} \right) \\ $$$$\frac{{vdv}}{{g}+{kv}^{\mathrm{2}} }=−{ds} \\ $$$$\int_{{v}_{\mathrm{0}} } ^{{v}} \frac{{vdv}}{\:{g}+{kv}^{\mathrm{2}} }=−\int_{\mathrm{0}} ^{{s}} {ds} \\ $$$$\int_{{v}_{\mathrm{0}} } ^{{v}} \frac{{d}\left({g}+{kv}^{\mathrm{2}} \right)}{\:{g}+{kv}^{\mathrm{2}} }=−\mathrm{2}{k}\int_{\mathrm{0}} ^{{s}} {ds} \\ $$$$\mathrm{ln}\:\frac{{g}+{kv}^{\mathrm{2}} }{{g}+{kv}_{\mathrm{0}} ^{\mathrm{2}} }=−\mathrm{2}{ks} \\ $$$$\Rightarrow{v}^{\mathrm{2}} =\frac{{g}}{{k}}\left[\left(\mathrm{1}+\frac{{kv}_{\mathrm{0}} ^{\mathrm{2}} }{{g}}\right){e}^{−\mathrm{2}{ks}} −\mathrm{1}\right] \\ $$$${at}\:{s}={h}_{{max}} :\:{v}=\mathrm{0} \\ $$$$\mathrm{0}=\frac{{g}}{{k}}\left[\left(\mathrm{1}+\frac{{kv}_{\mathrm{0}} ^{\mathrm{2}} }{{g}}\right){e}^{−\mathrm{2}{kh}_{{max}} } −\mathrm{1}\right] \\ $$$$\Rightarrow{e}^{−\mathrm{2}{kh}_{{max}} } =\frac{\mathrm{1}}{\mathrm{1}+\frac{{kv}_{\mathrm{0}} ^{\mathrm{2}} }{{g}}} \\ $$$$ \\ $$$$\boldsymbol{{motion}}\:\boldsymbol{{downwards}}: \\ $$$${mv}\frac{{dv}}{{ds}}={mg}−{kmv}^{\mathrm{2}} \\ $$$$\frac{{vdv}}{{g}−{kv}^{\mathrm{2}} }={ds} \\ $$$$\int_{\mathrm{0}} ^{{v}} \frac{{d}\left({g}−{kv}^{\mathrm{2}} \right)}{{g}−{kv}^{\mathrm{2}} }=−\mathrm{2}{k}\int_{\mathrm{0}} ^{{s}} {ds} \\ $$$$\mathrm{ln}\:\frac{{g}−{kv}^{\mathrm{2}} }{{g}}=−\mathrm{2}{ks} \\ $$$$\mathrm{1}−\frac{{kv}^{\mathrm{2}} }{{g}}={e}^{−\mathrm{2}{ks}} \\ $$$${v}^{\mathrm{2}} =\frac{{g}}{{k}}\left(\mathrm{1}−{e}^{−\mathrm{2}{ks}} \right) \\ $$$${when}\:{s}\rightarrow\infty,\:{v}\rightarrow{v}_{{c}} ={terminal}\:{speed} \\ $$$${v}_{{c}} ^{\mathrm{2}} =\frac{{g}}{{k}}\left(\mathrm{1}−\mathrm{0}\right)=\frac{{g}}{{k}} \\ $$$${when}\:{at}\:{initial}\:{position}:\:{s}={h}_{{max}} \\ $$$${v}_{\mathrm{1}} ^{\mathrm{2}} =\frac{{g}}{{k}}\left(\mathrm{1}−{e}^{−\mathrm{2}{kh}_{{max}} } \right) \\ $$$${v}_{\mathrm{1}} ^{\mathrm{2}} =\frac{{g}}{{k}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+\frac{{kv}_{\mathrm{0}} ^{\mathrm{2}} }{{g}}}\right) \\ $$$${v}_{\mathrm{1}} ^{\mathrm{2}} =\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} ×\frac{{g}}{{k}}}{\frac{{g}}{{k}}+{v}_{\mathrm{0}} ^{\mathrm{2}} } \\ $$$${since}\:\frac{{g}}{{k}}={v}_{{c}} ^{\mathrm{2}} \\ $$$$\Rightarrow{v}_{\mathrm{1}} ^{\mathrm{2}} =\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} {v}_{{c}} ^{\mathrm{2}} }{{v}_{{c}} ^{\mathrm{2}} +{v}_{\mathrm{0}} ^{\mathrm{2}} } \\ $$$$\Rightarrow{v}_{\mathrm{1}} =\frac{{v}_{\mathrm{0}} {v}_{{c}} }{\:\sqrt{{v}_{\mathrm{0}} ^{\mathrm{2}} +{v}_{{c}} ^{\mathrm{2}} }}\:\checkmark \\ $$

Commented by peter frank last updated on 22/Oct/22

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Commented by Tawa11 last updated on 23/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com