Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 178922 by mnjuly1970 last updated on 22/Oct/22

Answered by ARUNG_Brandon_MBU last updated on 22/Oct/22

(1/(n(n+1)(n+2)))=((1/2)/n)−(1/(n+1))+((1/2)/(n+2))  ((1/(n(n+1)(n+2))))^2 =(1/4)((1/n)−(2/(n+1))+(1/(n+2)))^2   =(1/4)((1/n^2 )+(4/((n+1)^2 ))+(1/((n+2)^2 ))+2(((−2)/(n(n+1)))+((−2)/((n+1)(n+2)))+(1/(n(n+2)))))  =(1/(4n^2 ))+(1/((n+1)^2 ))+(1/(4(n+2)^2 ))−((1/n)−(1/(n+1)))−((1/(n+1))−(1/(n+2)))+(1/2)(((1/2)/n)−((1/2)/(n+2)))  =(1/(4n^2 ))+(1/((n+1)^2 ))+(1/(4(n+2)^2 ))−(3/(4n))+(3/(4(n+2)))  S=Σ_(n=1) ^∞ ((1/(n(n+1)(n+2))))^2      =(1/4)ζ(2)+ζ(2)−1+(1/4)(ζ(2)−1−(1/2^2 ))−(3/4)H_n +(3/4)(H_n −1−(1/2))     =(3/2)ζ(2)−1−(1/4)−(1/(16))−(3/4)−(3/8)=(3/2)ζ(2)−((39)/(16))

$$\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}=\frac{\frac{\mathrm{1}}{\mathrm{2}}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\frac{\mathrm{1}}{\mathrm{2}}}{{n}+\mathrm{2}} \\ $$$$\left(\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{2}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}+\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }+\frac{\mathrm{4}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({n}+\mathrm{2}\right)^{\mathrm{2}} }+\mathrm{2}\left(\frac{−\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)}+\frac{−\mathrm{2}}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}+\frac{\mathrm{1}}{{n}\left({n}+\mathrm{2}\right)}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}\left({n}+\mathrm{2}\right)^{\mathrm{2}} }−\left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)−\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}−\frac{\mathrm{1}}{{n}+\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}/\mathrm{2}}{{n}}−\frac{\mathrm{1}/\mathrm{2}}{{n}+\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}\left({n}+\mathrm{2}\right)^{\mathrm{2}} }−\frac{\mathrm{3}}{\mathrm{4}{n}}+\frac{\mathrm{3}}{\mathrm{4}\left({n}+\mathrm{2}\right)} \\ $$$${S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}\right)^{\mathrm{2}} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\zeta\left(\mathrm{2}\right)+\zeta\left(\mathrm{2}\right)−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}\left(\zeta\left(\mathrm{2}\right)−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\right)−\frac{\mathrm{3}}{\mathrm{4}}{H}_{{n}} +\frac{\mathrm{3}}{\mathrm{4}}\left({H}_{{n}} −\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\:\:\:=\frac{\mathrm{3}}{\mathrm{2}}\zeta\left(\mathrm{2}\right)−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{16}}−\frac{\mathrm{3}}{\mathrm{4}}−\frac{\mathrm{3}}{\mathrm{8}}=\frac{\mathrm{3}}{\mathrm{2}}\zeta\left(\mathrm{2}\right)−\frac{\mathrm{39}}{\mathrm{16}} \\ $$

Commented by mnjuly1970 last updated on 22/Oct/22

thanks alot sir brandon

$${thanks}\:{alot}\:{sir}\:{brandon} \\ $$

Commented by Ar Brandon last updated on 23/Oct/22

You're welcome, Sir!

Commented by Tawa11 last updated on 23/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com