Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 1794 by Rasheed Soomro last updated on 29/Sep/15

Simplify  log_((3+4i)) (−7+24i)

$${Simplify} \\ $$$${log}_{\left(\mathrm{3}+\mathrm{4}{i}\right)} \left(−\mathrm{7}+\mathrm{24}{i}\right) \\ $$

Commented by 112358 last updated on 29/Sep/15

Define p=log_((3+4i)) (−7+24i)  By change of base to base e  we can rewrite p as       p=((ln(−7+24i))/(ln(3+4i))) .  Let q=3+4i. In exponential form  we get q=5e^(itan^(−1) (4/3))  so then  lnq=ln5+itan^(−1) (4/3).  Let w=−7+24i. The modulus of  w is found to be ∣w∣=25. The   principal argument θ of w is given  by θ=π−tan^(−1) (((24)/7)). We then get  in exponential form   w=25e^(i(π−tan^(−1) (24/7))) . Therefore  lnw=ln25+i(π−tan^(−1) (24/7))  Thus  p=((ln25+i(π−tan^(−1) (24/7)))/(ln5+itan^(−1) (4/3)))  p=(((2ln5+i(π−tan^(−1) [((24)/7)]))(ln5−itan^(−1) [(4/3)]))/((ln5)^2 +(tan^(−1) [(4/3)])^2 ))  p=((2(ln5)^2 +(π−tan^(−1) [((24)/7)])tan^(−1) [(4/3)]+i{π−tan^(−1) [((24)/7)]−2(tan^(−1) [(4/3)])}ln5)/((ln5)^2 +(tan^(−1) [(4/3)])^2 ))  From this one can extract the  real and imaginary parts of p.  So log_((3+4i)) (−7+24i)=x+iy  where x=Re(p) and y=Im(p).

$${Define}\:{p}={log}_{\left(\mathrm{3}+\mathrm{4}{i}\right)} \left(−\mathrm{7}+\mathrm{24}{i}\right) \\ $$$${By}\:{change}\:{of}\:{base}\:{to}\:{base}\:{e} \\ $$$${we}\:{can}\:{rewrite}\:{p}\:{as}\: \\ $$$$\:\:\:\:{p}=\frac{{ln}\left(−\mathrm{7}+\mathrm{24}{i}\right)}{{ln}\left(\mathrm{3}+\mathrm{4}{i}\right)}\:. \\ $$$${Let}\:{q}=\mathrm{3}+\mathrm{4}{i}.\:{In}\:{exponential}\:{form} \\ $$$${we}\:{get}\:{q}=\mathrm{5}{e}^{{itan}^{−\mathrm{1}} \left(\mathrm{4}/\mathrm{3}\right)} \:{so}\:{then} \\ $$$${lnq}={ln}\mathrm{5}+{itan}^{−\mathrm{1}} \left(\mathrm{4}/\mathrm{3}\right). \\ $$$${Let}\:{w}=−\mathrm{7}+\mathrm{24}{i}.\:{The}\:{modulus}\:{of} \\ $$$${w}\:{is}\:{found}\:{to}\:{be}\:\mid{w}\mid=\mathrm{25}.\:{The}\: \\ $$$${principal}\:{argument}\:\theta\:{of}\:{w}\:{is}\:{given} \\ $$$${by}\:\theta=\pi−{tan}^{−\mathrm{1}} \left(\frac{\mathrm{24}}{\mathrm{7}}\right).\:{We}\:{then}\:{get} \\ $$$${in}\:{exponential}\:{form}\: \\ $$$${w}=\mathrm{25}{e}^{{i}\left(\pi−{tan}^{−\mathrm{1}} \left(\mathrm{24}/\mathrm{7}\right)\right)} .\:{Therefore} \\ $$$${lnw}={ln}\mathrm{25}+{i}\left(\pi−{tan}^{−\mathrm{1}} \left(\mathrm{24}/\mathrm{7}\right)\right) \\ $$$${Thus} \\ $$$${p}=\frac{{ln}\mathrm{25}+{i}\left(\pi−{tan}^{−\mathrm{1}} \left(\mathrm{24}/\mathrm{7}\right)\right)}{{ln}\mathrm{5}+{itan}^{−\mathrm{1}} \left(\mathrm{4}/\mathrm{3}\right)} \\ $$$${p}=\frac{\left(\mathrm{2}{ln}\mathrm{5}+{i}\left(\pi−{tan}^{−\mathrm{1}} \left[\frac{\mathrm{24}}{\mathrm{7}}\right]\right)\right)\left({ln}\mathrm{5}−{itan}^{−\mathrm{1}} \left[\frac{\mathrm{4}}{\mathrm{3}}\right]\right)}{\left({ln}\mathrm{5}\right)^{\mathrm{2}} +\left({tan}^{−\mathrm{1}} \left[\frac{\mathrm{4}}{\mathrm{3}}\right]\right)^{\mathrm{2}} } \\ $$$${p}=\frac{\mathrm{2}\left({ln}\mathrm{5}\right)^{\mathrm{2}} +\left(\pi−{tan}^{−\mathrm{1}} \left[\frac{\mathrm{24}}{\mathrm{7}}\right]\right){tan}^{−\mathrm{1}} \left[\frac{\mathrm{4}}{\mathrm{3}}\right]+{i}\left\{\pi−{tan}^{−\mathrm{1}} \left[\frac{\mathrm{24}}{\mathrm{7}}\right]−\mathrm{2}\left({tan}^{−\mathrm{1}} \left[\frac{\mathrm{4}}{\mathrm{3}}\right]\right)\right\}{ln}\mathrm{5}}{\left({ln}\mathrm{5}\right)^{\mathrm{2}} +\left({tan}^{−\mathrm{1}} \left[\frac{\mathrm{4}}{\mathrm{3}}\right]\right)^{\mathrm{2}} } \\ $$$${From}\:{this}\:{one}\:{can}\:{extract}\:{the} \\ $$$${real}\:{and}\:{imaginary}\:{parts}\:{of}\:{p}. \\ $$$${So}\:{log}_{\left(\mathrm{3}+\mathrm{4}{i}\right)} \left(−\mathrm{7}+\mathrm{24}{i}\right)={x}+{iy} \\ $$$${where}\:{x}={Re}\left({p}\right)\:{and}\:{y}={Im}\left({p}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com