Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 179449 by Shrinava last updated on 29/Oct/22

Solve for real numbers:  3sinx + 4(y + cosx) = y^2  + 9

Solveforrealnumbers:3sinx+4(y+cosx)=y2+9

Answered by mr W last updated on 29/Oct/22

3 sin x+4 cos x−5=y^2 −4y+4  5[sin (x+α)−1]=(y−2)^2   since sin (x+α)≤1, LHS ≤0.  but RHS≥0, therefore  LHS=RHS=0  ⇒sin (x+α)=1 ⇒x=2kπ+(π/2)−tan^(−1) (4/3)  ⇒y=2

3sinx+4cosx5=y24y+45[sin(x+α)1]=(y2)2sincesin(x+α)1,LHS0.butRHS0,thereforeLHS=RHS=0sin(x+α)=1x=2kπ+π2tan143y=2

Commented by Shrinava last updated on 01/Nov/22

cool dear professor thank you

cooldearprofessorthankyou

Answered by manxsol last updated on 29/Oct/22

3sinx+4cosx=y^2 −4y+9  (3/5)sinx+(4/5)cosx=((y^2 −4y+9)/5)  sin(x+θ)=((y^2 −4y+9)/5)   θ=arsen(3/5)  −1≤((y^2 −4y+9)/5)≤1  −5≤y^2 −4y+9 Λ^�  y^2 −4y+9≤5  0≤y^2 −4y+14   Δ=16−56       Δ<0⇒y^2 −4y+14 ⟩0   ∀y>  y^2 −4y+9≤5  y^2 −4y+4≤0  (y−2)^2 ≤0  solution y=2     sin(x+θ)=((2^2 −4(2)+9)/5)=1  x+θ=(π/2)+2kπ  x=((π/2)−arcsin((3/5)))+2kπ

3sinx+4cosx=y24y+935sinx+45cosx=y24y+95sin(x+θ)=y24y+95θ=arsen(3/5)1y24y+9515y24y+9Λ^y24y+950y24y+14Δ=1656Δ<0y24y+140y>y24y+95y24y+40(y2)20solutiony=2sin(x+θ)=224(2)+95=1x+θ=π2+2kπx=(π2arcsin(35))+2kπ

Commented by Shrinava last updated on 01/Nov/22

cool dear professor thank you

cooldearprofessorthankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com