Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 17963 by ajfour last updated on 13/Jul/17

Commented by ajfour last updated on 13/Jul/17

AB=2a  ,  CD=2b  Find r in terms of   a,b,φ, and R.  Hence find AP^2 +BP^2 +CP^2 +DP^2 .

$$\mathrm{AB}=\mathrm{2a}\:\:,\:\:\mathrm{CD}=\mathrm{2b} \\ $$$$\mathrm{Find}\:\boldsymbol{\mathrm{r}}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\:\:\mathrm{a},\mathrm{b},\phi,\:\mathrm{and}\:\mathrm{R}. \\ $$$$\mathrm{Hence}\:\mathrm{find}\:\mathrm{AP}^{\mathrm{2}} +\mathrm{BP}^{\mathrm{2}} +\mathrm{CP}^{\mathrm{2}} +\mathrm{DP}^{\mathrm{2}} . \\ $$

Commented by ajfour last updated on 13/Jul/17

Commented by ajfour last updated on 13/Jul/17

x=(√(R^2 −a^2 ))   ,    y=(√(R^2 −b^2 ))   sin 𝛗_1 =(x/r)    ,     sin 𝛗_2 =(y/r)        𝛗_1 +𝛗_2  = 𝛗   , so  sin^(−1) (((√(R^2 −a^2 ))/r) )+sin^(−1) (((√(R^2 −b^2 ))/r))=𝛗  ...(i)    cannot r be obtained explicitly ?  AP=a−PM    ,  BP=a+PM  CP=b−NP     ,  DP=b+NP  AP^2 +BP^2 +CP^2 +DP^2 =         2a^2 +2PM^2 +2b^2 +2NP^2    ...(ii)  Now, PM^2 +NP^2 =r^2 −x^2 +r^2 −y^2    and with  x^2 =R^2 −a^2  ,  y^2 =R^2 −b^2   we have   PM^2 +NP^2 =2r^2 −(x^2 +y^2 )                         =2r^2 −(2R^2 −a^2 −b^2 )                         =2r^2 +a^2 +b^2 −2R^2   substituting in (ii), we get  AP^2 +BP^2 +CP^2 +DP^2       =(2a)^2 +(2b)^2 −4(R^2 −r^2 ) ;      r is obtained from (i) .

$$\mathrm{x}=\sqrt{\mathrm{R}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }\:\:\:,\:\:\:\:\mathrm{y}=\sqrt{\mathrm{R}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} }\: \\ $$$$\mathrm{sin}\:\boldsymbol{\phi}_{\mathrm{1}} =\frac{\mathrm{x}}{\mathrm{r}}\:\:\:\:,\:\:\:\:\:\mathrm{sin}\:\boldsymbol{\phi}_{\mathrm{2}} =\frac{\mathrm{y}}{\mathrm{r}} \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}_{\mathrm{1}} +\boldsymbol{\phi}_{\mathrm{2}} \:=\:\boldsymbol{\phi}\:\:\:,\:\mathrm{so} \\ $$$$\mathrm{sin}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{R}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}{\mathrm{r}}\:\right)+\mathrm{sin}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{R}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} }}{\mathrm{r}}\right)=\boldsymbol{\phi}\:\:...\left(\mathrm{i}\right) \\ $$$$\:\:\mathrm{cannot}\:\mathrm{r}\:\mathrm{be}\:\mathrm{obtained}\:\mathrm{explicitly}\:? \\ $$$$\mathrm{AP}=\mathrm{a}−\mathrm{PM}\:\:\:\:,\:\:\mathrm{BP}=\mathrm{a}+\mathrm{PM} \\ $$$$\mathrm{CP}=\mathrm{b}−\mathrm{NP}\:\:\:\:\:,\:\:\mathrm{DP}=\mathrm{b}+\mathrm{NP} \\ $$$$\mathrm{AP}^{\mathrm{2}} +\mathrm{BP}^{\mathrm{2}} +\mathrm{CP}^{\mathrm{2}} +\mathrm{DP}^{\mathrm{2}} =\:\: \\ $$$$\:\:\:\:\:\mathrm{2a}^{\mathrm{2}} +\mathrm{2PM}^{\mathrm{2}} +\mathrm{2b}^{\mathrm{2}} +\mathrm{2NP}^{\mathrm{2}} \:\:\:...\left(\mathrm{ii}\right) \\ $$$$\mathrm{Now},\:\mathrm{PM}^{\mathrm{2}} +\mathrm{NP}^{\mathrm{2}} =\mathrm{r}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \\ $$$$\:\mathrm{and}\:\mathrm{with}\:\:\mathrm{x}^{\mathrm{2}} =\mathrm{R}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \:,\:\:\mathrm{y}^{\mathrm{2}} =\mathrm{R}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \\ $$$$\mathrm{we}\:\mathrm{have} \\ $$$$\:\mathrm{PM}^{\mathrm{2}} +\mathrm{NP}^{\mathrm{2}} =\mathrm{2r}^{\mathrm{2}} −\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2r}^{\mathrm{2}} −\left(\mathrm{2R}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2r}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} −\mathrm{2R}^{\mathrm{2}} \\ $$$$\mathrm{substituting}\:\mathrm{in}\:\left(\mathrm{ii}\right),\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{AP}^{\mathrm{2}} +\mathrm{BP}^{\mathrm{2}} +\mathrm{CP}^{\mathrm{2}} +\mathrm{DP}^{\mathrm{2}} \\ $$$$\:\:\:\:=\left(\mathrm{2a}\right)^{\mathrm{2}} +\left(\mathrm{2b}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{R}^{\mathrm{2}} −\mathrm{r}^{\mathrm{2}} \right)\:; \\ $$$$\:\:\:\:\mathrm{r}\:\mathrm{is}\:\mathrm{obtained}\:\mathrm{from}\:\left(\mathrm{i}\right)\:. \\ $$

Commented by b.e.h.i.8.3.417@gmail.com last updated on 14/Jul/17

nice and beautiful mr Ajfour.

$${nice}\:{and}\:{beautiful}\:{mr}\:{Ajfour}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com