Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 179919 by mnjuly1970 last updated on 04/Nov/22

         Evaluate         Ω = lim_( n→∞) ( n− Σ_(k=1) ^n cos ( (( (√k))/( n))  ) ) =?

EvaluateΩ=limn(nnk=1cos(kn))=?

Answered by mindispower last updated on 05/Nov/22

cos(x)=1−(x^2 /2)+sin(c).(x^3 /6),∀x∈[0,(π/2)]∃c∈[0,(π/2)]        1−(x^2 /2)≤cos(x)≤1−(x^2 /2)+(x^3 /6)  S=Σcos(((√k)/n))  Σ(1−(k/(2n^2 )))≤S≤Σ(1−(k/(2n^2 ))+(1/(6n^(3/2) )).(√(k^3 /n^3 )))  (k/n)≤1  n−(1/(4n^2 ))n(n+1)≤S≤n−((n(n+1))/(4n^2 ))+(1/(n^(3/2) 6))(√(k^3 /n^3 ))≤  n−((n(n+1))/(4n^2 ))+(1/(6(√n)))→    ((n(n+1))/(4n^2 ))−(1/(6(√n)))→(1/4)≤(n−Σcos(((√k)/n)))≤((n(n+1))/(4n^2 ))→(1/4)  lim_(n→∞) n−Σcos((√k)/n)=(1/4)

cos(x)=1x22+sin(c).x36,x[0,π2]c[0,π2]1x22cos(x)1x22+x36S=Σcos(kn)Σ(1k2n2)SΣ(1k2n2+16n32.k3n3)kn1n14n2n(n+1)Snn(n+1)4n2+1n326k3n3nn(n+1)4n2+16nn(n+1)4n216n14(nΣcos(kn))n(n+1)4n214limnnΣcoskn=14

Commented by mnjuly1970 last updated on 05/Nov/22

   thanks alot       welcom again sir

thanksalotwelcomagainsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com