Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 180062 by Matica last updated on 06/Nov/22

how do you write the parametric equation of a plan in space? it is given 3 points   A(x_A ,y_A ,z_A ) ; B(x_B ,y_B ,z_B ) and C(x_C ,y_C ,z_C ).

$${how}\:{do}\:{you}\:{write}\:{the}\:{parametric}\:{equation}\:{of}\:{a}\:{plan}\:{in}\:{space}?\:{it}\:{is}\:{given}\:\mathrm{3}\:{points}\: \\ $$$${A}\left({x}_{{A}} ,{y}_{{A}} ,{z}_{{A}} \right)\:;\:{B}\left({x}_{{B}} ,{y}_{{B}} ,{z}_{{B}} \right)\:{and}\:{C}\left({x}_{{C}} ,{y}_{{C}} ,{z}_{{C}} \right). \\ $$

Answered by hmr last updated on 07/Nov/22

  Finding the parametric form of a plane  is similar to the parametric form of a line.    For line, we need an initial point  and a vector; but for plane, an initial  point and two vectors are needed.    We consider A(x_A , y_A , z_A ) as initial point.  Then we use B & C to write vectors AB^(→)  & AC^(→) .  AB^(→)  = <x_B  − x_A , y_B  − y_A , z_B  − z_A >  AC^(→)  = <x_C  − x_A , y_C  − y_A , z_C  − z_A >

$$ \\ $$$$\mathrm{Finding}\:\mathrm{the}\:\mathrm{parametric}\:\mathrm{form}\:\mathrm{of}\:\mathrm{a}\:\mathrm{plane} \\ $$$$\mathrm{is}\:\mathrm{similar}\:\mathrm{to}\:\mathrm{the}\:\mathrm{parametric}\:\mathrm{form}\:\mathrm{of}\:\mathrm{a}\:\mathrm{line}. \\ $$$$ \\ $$$$\mathrm{For}\:\mathrm{line},\:\mathrm{we}\:\mathrm{need}\:\mathrm{an}\:\mathrm{initial}\:\mathrm{point} \\ $$$$\mathrm{and}\:\mathrm{a}\:\mathrm{vector};\:\mathrm{but}\:\mathrm{for}\:\mathrm{plane},\:\mathrm{an}\:\mathrm{initial} \\ $$$$\mathrm{point}\:\mathrm{and}\:\mathrm{two}\:\mathrm{vectors}\:\mathrm{are}\:\mathrm{needed}. \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{consider}\:{A}\left({x}_{{A}} ,\:{y}_{{A}} ,\:{z}_{{A}} \right)\:\mathrm{as}\:\mathrm{initial}\:\mathrm{point}. \\ $$$$\mathrm{Then}\:\mathrm{we}\:\mathrm{use}\:{B}\:\&\:{C}\:\mathrm{to}\:\mathrm{write}\:\mathrm{vectors}\:\overset{\rightarrow} {{AB}}\:\&\:\overset{\rightarrow} {{AC}}. \\ $$$$\overset{\rightarrow} {{AB}}\:=\:<{x}_{{B}} \:−\:{x}_{{A}} ,\:{y}_{{B}} \:−\:{y}_{{A}} ,\:{z}_{{B}} \:−\:{z}_{{A}} > \\ $$$$\overset{\rightarrow} {{AC}}\:=\:<{x}_{{C}} \:−\:{x}_{{A}} ,\:{y}_{{C}} \:−\:{y}_{{A}} ,\:{z}_{{C}} \:−\:{z}_{{A}} > \\ $$

Commented by hmr last updated on 07/Nov/22

Commented by hmr last updated on 07/Nov/22

Commented by hmr last updated on 07/Nov/22

  Now consider another point on  the plane like D = (x, y, z).    Notice that the vector   AD^(→)  = <x − x_A , y − y_A , z − z_A >  is a linear combination of   vectors AB^(→)  & AC^(→) .    So we can write all points  of the plane like this:  AD^(→)  = t AB^(→)  + u AC^(→)   →  <x−x_A , y−y_A , z−z_A > = t <x_B −x_A , y_B −y_A , z_B −z_A > + u <x_C −x_A , y_C −y_A , z_C −z_A >  →   { ((x = x_A  + t(x_B −x_A ) + u(x_C −x_A ))),((y = y_(A ) + t(y_B −y_A ) + u(y_C −y_A ))),((z = z_A  + t(z_B −z_A ) + u(z_C −z_A ))) :}    Where t & u are the parameters.

$$ \\ $$$$\mathrm{Now}\:\mathrm{consider}\:\mathrm{another}\:\mathrm{point}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{plane}\:\mathrm{like}\:\mathrm{D}\:=\:\left({x},\:{y},\:{z}\right). \\ $$$$ \\ $$$$\mathrm{Notice}\:\mathrm{that}\:\mathrm{the}\:\mathrm{vector}\: \\ $$$$\overset{\rightarrow} {{AD}}\:=\:<{x}\:−\:{x}_{{A}} ,\:{y}\:−\:{y}_{{A}} ,\:{z}\:−\:{z}_{{A}} > \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{linear}\:\mathrm{combination}\:\mathrm{of}\: \\ $$$$\mathrm{vectors}\:\overset{\rightarrow} {{AB}}\:\&\:\overset{\rightarrow} {{AC}}. \\ $$$$ \\ $$$$\mathrm{So}\:\mathrm{we}\:\mathrm{can}\:\mathrm{write}\:\mathrm{all}\:\mathrm{points} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{like}\:\mathrm{this}: \\ $$$$\overset{\rightarrow} {{AD}}\:=\:{t}\:\overset{\rightarrow} {{AB}}\:+\:{u}\:\overset{\rightarrow} {{AC}} \\ $$$$\rightarrow \\ $$$$<{x}−{x}_{{A}} ,\:{y}−{y}_{{A}} ,\:{z}−{z}_{{A}} >\:=\:{t}\:<{x}_{{B}} −{x}_{{A}} ,\:{y}_{{B}} −{y}_{{A}} ,\:{z}_{{B}} −{z}_{{A}} >\:+\:{u}\:<{x}_{{C}} −{x}_{{A}} ,\:{y}_{{C}} −{y}_{{A}} ,\:{z}_{{C}} −{z}_{{A}} > \\ $$$$\rightarrow \\ $$$$\begin{cases}{{x}\:=\:{x}_{{A}} \:+\:{t}\left({x}_{{B}} −{x}_{{A}} \right)\:+\:{u}\left({x}_{{C}} −{x}_{{A}} \right)}\\{{y}\:=\:{y}_{{A}\:} +\:{t}\left({y}_{{B}} −{y}_{{A}} \right)\:+\:{u}\left({y}_{{C}} −{y}_{{A}} \right)}\\{{z}\:=\:{z}_{{A}} \:+\:{t}\left({z}_{{B}} −{z}_{{A}} \right)\:+\:{u}\left({z}_{{C}} −{z}_{{A}} \right)}\end{cases} \\ $$$$ \\ $$$$\mathrm{Where}\:{t}\:\&\:{u}\:\mathrm{are}\:\mathrm{the}\:\mathrm{parameters}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com