Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 18015 by alex041103 last updated on 13/Jul/17

Just for fun  Prove that there are no real numbers A and B that  satisfy   sinA=(2/(sinB))

$${Just}\:{for}\:{fun} \\ $$$${Prove}\:{that}\:{there}\:{are}\:{no}\:{real}\:{numbers}\:{A}\:{and}\:{B}\:{that} \\ $$$${satisfy}\: \\ $$$${sinA}=\frac{\mathrm{2}}{{sinB}} \\ $$

Commented by alex041103 last updated on 13/Jul/17

if you want you can generalize it   for complex numbers and show that  if A,B∈C there are such numbers  which sitisfy this

$${if}\:{you}\:{want}\:{you}\:{can}\:{generalize}\:{it}\: \\ $$$${for}\:{complex}\:{numbers}\:{and}\:{show}\:{that} \\ $$$${if}\:{A},{B}\in\mathbb{C}\:{there}\:{are}\:{such}\:{numbers} \\ $$$${which}\:{sitisfy}\:{this} \\ $$

Answered by Tinkutara last updated on 13/Jul/17

LHS ∈ [−1, 1] but  RHS ∈ (−∞, −2] ∪ [2, ∞) hence there  is no solution in real numbers.

$$\mathrm{LHS}\:\in\:\left[−\mathrm{1},\:\mathrm{1}\right]\:\mathrm{but} \\ $$$$\mathrm{RHS}\:\in\:\left(−\infty,\:−\mathrm{2}\right]\:\cup\:\left[\mathrm{2},\:\infty\right)\:\mathrm{hence}\:\mathrm{there} \\ $$$$\mathrm{is}\:\mathrm{no}\:\mathrm{solution}\:\mathrm{in}\:\mathrm{real}\:\mathrm{numbers}. \\ $$

Commented by alex041103 last updated on 14/Jul/17

What about the complex numbers?

$${What}\:{about}\:{the}\:{complex}\:{numbers}? \\ $$

Commented by alex041103 last updated on 14/Jul/17

yess

$${yess} \\ $$

Commented by alex041103 last updated on 14/Jul/17

for complex numbers i′ll post a solution  after 1.5 hours

$${for}\:{complex}\:{numbers}\:{i}'{ll}\:{post}\:{a}\:{solution} \\ $$$${after}\:\mathrm{1}.\mathrm{5}\:{hours} \\ $$

Answered by alex041103 last updated on 14/Jul/17

    Tinkutara did a nice proof for the  case where A,B∈R  But what about the case where  A,B∈C (complex numbers)  We know that for z∈C, sin z ∈(−∞,∞)  So clearly there are solutions.  In fact there are infinate number of solutions.   We know that for z∈C  (1) e^(iz) =cos z + isin z (Euler′s formula)  ⇒e^(i(−z)) =cos z−isin z  or  (2)  −e^(−iz) =−cos z + isin z  Then we add (1) and (2)  2isin z = e^(iz)  − e^(−iz)   ⇒sin z = ((e^(iz)  − e^(−iz) )/(2i))  Now let′s define sin^(−1) (z) using the  complex definition for sin z.  Let s = sin z  ⇒2is=e^(iz) −e^(−iz)   2ise^(iz) =(e^(iz) )^2 −1  let t=e^(iz)   t^2 −2ist−1=0  ⇒t_(1;2) =((2is±(√(−4s^2 +4)))/2)=is±(√(1−s^2 ))  ⇒ln(e^(iz) )=ln(is±(√(1−s^2 )))=iz  ⇒z=sin^(−1) (s)=−i ln(is±(√(1−s^2 )))  And you can see if you substitute  back s=sin z, after you simplify  you′ll get sin^(−1) (sin z)=z.  So now   sinA=(2/(sinB)) ⇒A=sin^(−1) ((2/(sin B)))  we insert that into the formula and we get  A=−i ln(((2i)/(sin B))±(√(1−(4/(sin^2 B)))))  And we add 2kπ (k∈Z) because  sin(A)=sin(A+2π)  A=−i ln(((2i)/(sin B))±(√(1−(4/(sin^2 B))))) +2kπ  Example:  sin A=(2/(sin 45°))=2(√2)  A=−i ln(((2i)/((((√2)/2))))±(√(1−(4/(((2/4))))))) + 2kπ=  =−i ln(2(√2)i±(√(−7)))+2kπ=  =−i ln(2(√2)i±i(√7))+2kπ=  =−i ln[i((√8)±(√7))]+2kπ=  =−i[ln(i)+ln((√8)±(√7))]+2kπ  We now that   z=a+bi=r(cosθ + isinθ)=re^(iθ)   ⇒z=e^(ln(r) + iθ)   ⇒ln(z)=ln(r) + iθ  where r=(√(a^2 +b^2 )) and θ=tan^(−1) ((b/a)).  In our case  ln(i)=ln(1)+i(π/2)=((πi)/2)  ⇒A=−i×((πi)/2) − iln((√8)±(√7))+2kπ  =(π/2)−iln((√8)±(√7)) + 2kπ  ⇒A=(π/2)−i ln((√8)±(√7))+2kπ, k∈Z

$$ \\ $$$$ \\ $$$${Tinkutara}\:{did}\:{a}\:{nice}\:{proof}\:{for}\:{the} \\ $$$${case}\:{where}\:{A},{B}\in\mathbb{R} \\ $$$${But}\:{what}\:{about}\:{the}\:{case}\:{where} \\ $$$${A},{B}\in\mathbb{C}\:\left({complex}\:{numbers}\right) \\ $$$${We}\:{know}\:{that}\:{for}\:{z}\in\mathbb{C},\:{sin}\:{z}\:\in\left(−\infty,\infty\right) \\ $$$${So}\:{clearly}\:{there}\:{are}\:{solutions}. \\ $$$${In}\:{fact}\:{there}\:{are}\:{infinate}\:{number}\:{of}\:{solutions}.\: \\ $$$${We}\:{know}\:{that}\:{for}\:{z}\in\mathbb{C} \\ $$$$\left(\mathrm{1}\right)\:{e}^{{iz}} ={cos}\:{z}\:+\:{isin}\:{z}\:\left({Euler}'{s}\:{formula}\right) \\ $$$$\Rightarrow{e}^{{i}\left(−{z}\right)} ={cos}\:{z}−{isin}\:{z} \\ $$$${or} \\ $$$$\left(\mathrm{2}\right)\:\:−{e}^{−{iz}} =−{cos}\:{z}\:+\:{isin}\:{z} \\ $$$${Then}\:{we}\:{add}\:\left(\mathrm{1}\right)\:{and}\:\left(\mathrm{2}\right) \\ $$$$\mathrm{2}{isin}\:{z}\:=\:{e}^{{iz}} \:−\:{e}^{−{iz}} \\ $$$$\Rightarrow{sin}\:{z}\:=\:\frac{{e}^{{iz}} \:−\:{e}^{−{iz}} }{\mathrm{2}{i}} \\ $$$${Now}\:{let}'{s}\:{define}\:{sin}^{−\mathrm{1}} \left({z}\right)\:{using}\:{the} \\ $$$${complex}\:{definition}\:{for}\:{sin}\:{z}. \\ $$$${Let}\:{s}\:=\:{sin}\:{z} \\ $$$$\Rightarrow\mathrm{2}{is}={e}^{{iz}} −{e}^{−{iz}} \\ $$$$\mathrm{2}{ise}^{{iz}} =\left({e}^{{iz}} \right)^{\mathrm{2}} −\mathrm{1} \\ $$$${let}\:{t}={e}^{{iz}} \\ $$$${t}^{\mathrm{2}} −\mathrm{2}{ist}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{t}_{\mathrm{1};\mathrm{2}} =\frac{\mathrm{2}{is}\pm\sqrt{−\mathrm{4}{s}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}={is}\pm\sqrt{\mathrm{1}−{s}^{\mathrm{2}} } \\ $$$$\Rightarrow{ln}\left({e}^{{iz}} \right)={ln}\left({is}\pm\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }\right)={iz} \\ $$$$\Rightarrow{z}=\mathrm{sin}^{−\mathrm{1}} \left({s}\right)=−{i}\:{ln}\left({is}\pm\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }\right) \\ $$$${And}\:{you}\:{can}\:{see}\:{if}\:{you}\:{substitute} \\ $$$${back}\:{s}={sin}\:{z},\:{after}\:{you}\:{simplify} \\ $$$${you}'{ll}\:{get}\:{s}\mathrm{in}^{−\mathrm{1}} \left(\mathrm{sin}\:{z}\right)={z}. \\ $$$${So}\:{now}\: \\ $$$${sinA}=\frac{\mathrm{2}}{{sinB}}\:\Rightarrow{A}={sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{{sin}\:{B}}\right) \\ $$$${we}\:{insert}\:{that}\:{into}\:{the}\:{formula}\:{and}\:{we}\:{get} \\ $$$${A}=−{i}\:{ln}\left(\frac{\mathrm{2}{i}}{{sin}\:{B}}\pm\sqrt{\mathrm{1}−\frac{\mathrm{4}}{{sin}^{\mathrm{2}} {B}}}\right) \\ $$$${And}\:{we}\:{add}\:\mathrm{2}{k}\pi\:\left({k}\in\mathbb{Z}\right)\:{because} \\ $$$${sin}\left({A}\right)={sin}\left({A}+\mathrm{2}\pi\right) \\ $$$${A}=−{i}\:{ln}\left(\frac{\mathrm{2}{i}}{{sin}\:{B}}\pm\sqrt{\mathrm{1}−\frac{\mathrm{4}}{{sin}^{\mathrm{2}} {B}}}\right)\:+\mathrm{2}{k}\pi \\ $$$${Example}: \\ $$$${sin}\:{A}=\frac{\mathrm{2}}{{sin}\:\mathrm{45}°}=\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${A}=−{i}\:{ln}\left(\frac{\mathrm{2}{i}}{\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)}\pm\sqrt{\mathrm{1}−\frac{\mathrm{4}}{\left(\frac{\mathrm{2}}{\mathrm{4}}\right)}}\right)\:+\:\mathrm{2}{k}\pi= \\ $$$$=−{i}\:{ln}\left(\mathrm{2}\sqrt{\mathrm{2}}{i}\pm\sqrt{−\mathrm{7}}\right)+\mathrm{2}{k}\pi= \\ $$$$=−{i}\:{ln}\left(\mathrm{2}\sqrt{\mathrm{2}}{i}\pm{i}\sqrt{\mathrm{7}}\right)+\mathrm{2}{k}\pi= \\ $$$$=−{i}\:{ln}\left[{i}\left(\sqrt{\mathrm{8}}\pm\sqrt{\mathrm{7}}\right)\right]+\mathrm{2}{k}\pi= \\ $$$$=−{i}\left[{ln}\left({i}\right)+{ln}\left(\sqrt{\mathrm{8}}\pm\sqrt{\mathrm{7}}\right)\right]+\mathrm{2}{k}\pi \\ $$$${We}\:{now}\:{that}\: \\ $$$${z}={a}+{bi}={r}\left({cos}\theta\:+\:{isin}\theta\right)={re}^{{i}\theta} \\ $$$$\Rightarrow{z}={e}^{{ln}\left({r}\right)\:+\:{i}\theta} \\ $$$$\Rightarrow{ln}\left({z}\right)={ln}\left({r}\right)\:+\:{i}\theta \\ $$$${where}\:{r}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:{and}\:\theta=\mathrm{tan}^{−\mathrm{1}} \left(\frac{{b}}{{a}}\right). \\ $$$${In}\:{our}\:{case} \\ $$$${ln}\left({i}\right)={ln}\left(\mathrm{1}\right)+{i}\frac{\pi}{\mathrm{2}}=\frac{\pi{i}}{\mathrm{2}} \\ $$$$\Rightarrow{A}=−{i}×\frac{\pi{i}}{\mathrm{2}}\:−\:{iln}\left(\sqrt{\mathrm{8}}\pm\sqrt{\mathrm{7}}\right)+\mathrm{2}{k}\pi \\ $$$$=\frac{\pi}{\mathrm{2}}−{iln}\left(\sqrt{\mathrm{8}}\pm\sqrt{\mathrm{7}}\right)\:+\:\mathrm{2}{k}\pi \\ $$$$\Rightarrow{A}=\frac{\pi}{\mathrm{2}}−{i}\:{ln}\left(\sqrt{\mathrm{8}}\pm\sqrt{\mathrm{7}}\right)+\mathrm{2}{k}\pi,\:{k}\in\mathbb{Z} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com