Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 180207 by Acem last updated on 09/Nov/22

 (2/(15)) ,  ((11)/(40))  ,  ((26)/(75))  ,  ((47)/(120))  , ...

$$\:\frac{\mathrm{2}}{\mathrm{15}}\:,\:\:\frac{\mathrm{11}}{\mathrm{40}}\:\:,\:\:\frac{\mathrm{26}}{\mathrm{75}}\:\:,\:\:\frac{\mathrm{47}}{\mathrm{120}}\:\:,\:... \\ $$$$ \\ $$

Answered by Rasheed.Sindhi last updated on 09/Nov/22

Numerators:   [(2, ,(11), ,(26), ,(47), ,(74)),( ,9, ,(15), ,(21), ,(27), ),( , ,( 6), ,6, ,6, , ) ]    Denominators:   [((15), ,(40), ,(75), ,(120), ,(175)),( ,(25), ,(35), ,(45), ,(55), ),( , ,( 10), ,(10), ,(10), , ) ]   Next term:((74)/(175))

$${Numerators}: \\ $$$$\begin{bmatrix}{\mathrm{2}}&{\:}&{\mathrm{11}}&{\:}&{\mathrm{26}}&{\:}&{\mathrm{47}}&{\:}&{\mathrm{74}}\\{\:}&{\mathrm{9}}&{\:}&{\mathrm{15}}&{\:}&{\mathrm{21}}&{\:}&{\mathrm{27}}&{\:}\\{\:}&{\:}&{\:\mathrm{6}}&{\:}&{\mathrm{6}}&{\:}&{\mathrm{6}}&{\:}&{\:}\end{bmatrix}\:\: \\ $$$${Denominators}: \\ $$$$\begin{bmatrix}{\mathrm{15}}&{\:}&{\mathrm{40}}&{\:}&{\mathrm{75}}&{\:}&{\mathrm{120}}&{\:}&{\mathrm{175}}\\{\:}&{\mathrm{25}}&{\:}&{\mathrm{35}}&{\:}&{\mathrm{45}}&{\:}&{\mathrm{55}}&{\:}\\{\:}&{\:}&{\:\mathrm{10}}&{\:}&{\mathrm{10}}&{\:}&{\mathrm{10}}&{\:}&{\:}\end{bmatrix}\: \\ $$$${Next}\:{term}:\frac{\mathrm{74}}{\mathrm{175}}\:\: \\ $$

Commented by Acem last updated on 09/Nov/22

Yes Sir!   ok and the general limit of the sequence?

$${Yes}\:{Sir}!\: \\ $$$${ok}\:{and}\:{the}\:{general}\:{limit}\:{of}\:{the}\:{sequence}? \\ $$

Commented by Frix last updated on 09/Nov/22

(6/(10))=(3/5)

$$\frac{\mathrm{6}}{\mathrm{10}}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$

Answered by Frix last updated on 09/Nov/22

there′s no unique answer to questions like  this one.  a_n =((13n^3 )/(1800))−((47n^2 )/(600))+((587n)/(1800))−((73)/(600))  a_5 =((34)/(75))

$$\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{unique}\:\mathrm{answer}\:\mathrm{to}\:\mathrm{questions}\:\mathrm{like} \\ $$$$\mathrm{this}\:\mathrm{one}. \\ $$$${a}_{{n}} =\frac{\mathrm{13}{n}^{\mathrm{3}} }{\mathrm{1800}}−\frac{\mathrm{47}{n}^{\mathrm{2}} }{\mathrm{600}}+\frac{\mathrm{587}{n}}{\mathrm{1800}}−\frac{\mathrm{73}}{\mathrm{600}} \\ $$$${a}_{\mathrm{5}} =\frac{\mathrm{34}}{\mathrm{75}} \\ $$

Commented by Rasheed.Sindhi last updated on 09/Nov/22

Right sir!

$${Right}\:{sir}!\: \\ $$

Answered by Ar Brandon last updated on 09/Nov/22

Extending Sir Rasheed′s idea.  Numerator   u_n =2, 11, 26, 47, ... d_0 =2  Δu_n =9, 15, 21, ... d_1 =9  Δ^2 u_n =6, 6, ... d_2 =6  u_n =d_0 +((d_1 (n−1))/(1!))+((d_2 (n−1)(n−2))/(2!))       =2+9(n−1)+3(n−1)(n−2)       =3n^2 −1  Denominator  v_n =15, 40, 75, 120, ...  d_0 =15  Δv_n =25, 35, 45, ... d_1 =25  Δ^2 v_n =10, 10, ...  d_2 =10  v_n =15+25(n−1)+5(n−1)(n−2)       =5n^2 +10n  General formula=(u_n /v_n )=((3n^2 −1)/(5n^2 +10n))

$$\mathrm{Extending}\:\mathrm{Sir}\:\mathrm{Rasheed}'\mathrm{s}\:\mathrm{idea}. \\ $$$$\mathrm{Numerator}\: \\ $$$${u}_{{n}} =\mathrm{2},\:\mathrm{11},\:\mathrm{26},\:\mathrm{47},\:...\:{d}_{\mathrm{0}} =\mathrm{2} \\ $$$$\Delta{u}_{{n}} =\mathrm{9},\:\mathrm{15},\:\mathrm{21},\:...\:{d}_{\mathrm{1}} =\mathrm{9} \\ $$$$\Delta^{\mathrm{2}} {u}_{{n}} =\mathrm{6},\:\mathrm{6},\:...\:{d}_{\mathrm{2}} =\mathrm{6} \\ $$$${u}_{{n}} ={d}_{\mathrm{0}} +\frac{{d}_{\mathrm{1}} \left({n}−\mathrm{1}\right)}{\mathrm{1}!}+\frac{{d}_{\mathrm{2}} \left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\mathrm{2}!} \\ $$$$\:\:\:\:\:=\mathrm{2}+\mathrm{9}\left({n}−\mathrm{1}\right)+\mathrm{3}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right) \\ $$$$\:\:\:\:\:=\mathrm{3}{n}^{\mathrm{2}} −\mathrm{1} \\ $$$$\mathrm{Denominator} \\ $$$$\mathrm{v}_{{n}} =\mathrm{15},\:\mathrm{40},\:\mathrm{75},\:\mathrm{120},\:...\:\:{d}_{\mathrm{0}} =\mathrm{15} \\ $$$$\Delta\mathrm{v}_{{n}} =\mathrm{25},\:\mathrm{35},\:\mathrm{45},\:...\:{d}_{\mathrm{1}} =\mathrm{25} \\ $$$$\Delta^{\mathrm{2}} \mathrm{v}_{{n}} =\mathrm{10},\:\mathrm{10},\:...\:\:{d}_{\mathrm{2}} =\mathrm{10} \\ $$$$\mathrm{v}_{{n}} =\mathrm{15}+\mathrm{25}\left({n}−\mathrm{1}\right)+\mathrm{5}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right) \\ $$$$\:\:\:\:\:=\mathrm{5}{n}^{\mathrm{2}} +\mathrm{10}{n} \\ $$$$\mathrm{General}\:\mathrm{formula}=\frac{{u}_{{n}} }{\mathrm{v}_{{n}} }=\frac{\mathrm{3}{n}^{\mathrm{2}} −\mathrm{1}}{\mathrm{5}{n}^{\mathrm{2}} +\mathrm{10}{n}} \\ $$

Commented by Acem last updated on 09/Nov/22

Very well Sir! Thanksss

$${Very}\:{well}\:{Sir}!\:{Thanksss} \\ $$

Answered by Acem last updated on 09/Nov/22

Commented by Acem last updated on 09/Nov/22

{a_n }_(n= 1) ^∞ = {((3n^2 −1)/(5n^2 +10n))}_(n=1) ^∞

$$\left\{{a}_{{n}} \right\}_{{n}=\:\mathrm{1}} ^{\infty} =\:\left\{\frac{\mathrm{3}{n}^{\mathrm{2}} −\mathrm{1}}{\mathrm{5}{n}^{\mathrm{2}} +\mathrm{10}{n}}\right\}_{{n}=\mathrm{1}} ^{\infty} \\ $$$$ \\ $$

Answered by MJS_new last updated on 09/Nov/22

I like these more:  (1)  a_n =((259n^3 −408n^2 +341n−132)/(450n^3 ))  a_5 =((3958)/(9375))  a_∞ =((259)/(450))  (2)  a_n =((2(97n^3 −450n^2 +714n−360))/(5(85n^3 −370n^2 +576n−288)))  a_5 =((1634)/(3967))  a_∞ =((194)/(425))

$$\mathrm{I}\:\mathrm{like}\:\mathrm{these}\:\mathrm{more}: \\ $$$$\left(\mathrm{1}\right) \\ $$$${a}_{{n}} =\frac{\mathrm{259}{n}^{\mathrm{3}} −\mathrm{408}{n}^{\mathrm{2}} +\mathrm{341}{n}−\mathrm{132}}{\mathrm{450}{n}^{\mathrm{3}} } \\ $$$${a}_{\mathrm{5}} =\frac{\mathrm{3958}}{\mathrm{9375}} \\ $$$${a}_{\infty} =\frac{\mathrm{259}}{\mathrm{450}} \\ $$$$\left(\mathrm{2}\right) \\ $$$${a}_{{n}} =\frac{\mathrm{2}\left(\mathrm{97}{n}^{\mathrm{3}} −\mathrm{450}{n}^{\mathrm{2}} +\mathrm{714}{n}−\mathrm{360}\right)}{\mathrm{5}\left(\mathrm{85}{n}^{\mathrm{3}} −\mathrm{370}{n}^{\mathrm{2}} +\mathrm{576}{n}−\mathrm{288}\right)} \\ $$$${a}_{\mathrm{5}} =\frac{\mathrm{1634}}{\mathrm{3967}} \\ $$$${a}_{\infty} =\frac{\mathrm{194}}{\mathrm{425}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com