Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 180368 by 281981 last updated on 11/Nov/22

Commented by 281981 last updated on 11/Nov/22

ans:−π where x∈[−1 (1/( (√2)))]

ans:πwherex[112]

Commented by mr W last updated on 12/Nov/22

can you please show how you get this  answer?

canyoupleaseshowhowyougetthisanswer?

Commented by 281981 last updated on 12/Nov/22

i dont know the answer sir,but   given answer is option 2

idontknowtheanswersir,butgivenanswerisoption2

Commented by mr W last updated on 12/Nov/22

then the given answer is wrong.  there are multiple right answers.  but it can never be −π.

thenthegivenansweriswrong.therearemultiplerightanswers.butitcanneverbeπ.

Commented by 281981 last updated on 13/Nov/22

ok sir,tnq

oksir,tnq

Answered by Ar Brandon last updated on 11/Nov/22

Let x=sinθ=cos((π/2)−θ)  ⇒  2θ+sin^(−1) (2sinθcosθ)+3((π/2)−θ)−cos^(−1) (cos(3((π/2)−θ)))  =2θ+2θ+((3π)/2)−3θ−((3π)/2)+3θ=4θ=4sin^(−1) x, x∈[−1, 1]

Letx=sinθ=cos(π2θ)2θ+sin1(2sinθcosθ)+3(π2θ)cos1(cos(3(π2θ)))=2θ+2θ+3π23θ3π2+3θ=4θ=4sin1x,x[1,1]

Commented by 281981 last updated on 11/Nov/22

sir answer is option 2

siranswerisoption2

Commented by 281981 last updated on 11/Nov/22

−𝛑 where x∈[−1 (1/( (√2)))]

πwherex[112]

Commented by Ar Brandon last updated on 11/Nov/22

OK let's hope another member propose a solution.

Commented by Acem last updated on 12/Nov/22

@281981, well, let′s see your solve

@281981,well,letsseeyoursolve

Answered by mr W last updated on 12/Nov/22

let t=cos^(−1) x, 0≤t≤π  ⇒x=cos t  x=cos t=sin ((π/2)−t)  ⇒sin^(−1) x=(π/2)−t  2x(√(1−x^2 ))=2 cos t sin t=sin 2t  ⇒sin^(−1) (2x(√(1−x^2 )))=2t and 0≤t≤(π/4)  4x^3 −3x=4 cos^3  t−3 cos t=cos 3t  ⇒cos^(−1) (4x^3 −3x)=3t and 0≤t≤(π/3)  2 sin^(−1) x+sin^(−1) (2x(√(1−x^2 )))+3 cos^(−1) x−cos^(−1) (4x^3 −3x)  =2((π/2)−t)+2t+3t−3t  =π with 0≤t≤(π/4), i.e. (1/( (√2)))≤x≤1  or  let t=−cos^(−1) x, −π≤t≤0  x=cos (−t)=cos t  .....similarly as above  2 sin^(−1) x+sin^(−1) (2x(√(1−x^2 )))+3 cos^(−1) x−cos^(−1) (4x^3 −3x)  =2((π/2)−t)+2t−3t+3t  =π with −(π/4)≤t≤0, i.e. −1≤x≤−(1/( (√2)))  so we get (at least) two possibilities:  π with x∈[(1/( (√2))),1] or  π with x∈[−1,−(1/( (√2)))]

lett=cos1x,0tπx=costx=cost=sin(π2t)sin1x=π2t2x1x2=2costsint=sin2tsin1(2x1x2)=2tand0tπ44x33x=4cos3t3cost=cos3tcos1(4x33x)=3tand0tπ32sin1x+sin1(2x1x2)+3cos1xcos1(4x33x)=2(π2t)+2t+3t3t=πwith0tπ4,i.e.12x1orlett=cos1x,πt0x=cos(t)=cost.....similarlyasabove2sin1x+sin1(2x1x2)+3cos1xcos1(4x33x)=2(π2t)+2t3t+3t=πwithπ4t0,i.e.1x12soweget(atleast)twopossibilities:πwithx[12,1]orπwithx[1,12]

Commented by mr W last updated on 12/Nov/22

check with x=(4/5):  2 sin^(−1) x+sin^(−1) (2x(√(1−x^2 )))+3 cos^(−1) x−cos^(−1) (4x^3 −3x)  =2 sin^(−1) (4/5)+sin^(−1) (2×(4/5)(√(1−((4/5))^2 )))+3 cos^(−1) (4/5)−cos^(−1) (4((4/5))^3 −3×((4/5)))  =2 sin^(−1) (4/5)+sin^(−1) ((24)/(25))+3 cos^(−1) (4/5)−cos^(−1) (−((44)/(125)))  =2 sin^(−1) (4/5)+sin^(−1) ((24)/(25))+3 sin^(−1) (3/5)−(π−cos^(−1) ((44)/(125)))  =2 sin^(−1) (4/5)+sin^(−1) ((24)/(25))+3 sin^(−1) (3/5)+cos^(−1) ((44)/(125))−π  =π ✓  check with x=−(4/5):  2 sin^(−1) x+sin^(−1) (2x(√(1−x^2 )))+3 cos^(−1) x−cos^(−1) (4x^3 −3x)  =2 sin^(−1) (−(4/5))+sin^(−1) (−2×(4/5)(√(1−((4/5))^2 )))+3 cos^(−1) (−(4/5))−cos^(−1) (−4((4/5))^3 +3×((4/5)))  =−2 sin^(−1) (4/5)−sin^(−1) ((24)/(25))+3(π−cos^(−1) (4/5))−cos^(−1) ((44)/(125))  =3π−2 sin^(−1) (4/5)−sin^(−1) ((24)/(25))−3 cos^(−1) (4/5)−cos^(−1) ((44)/(125))  =π ✓

checkwithx=45:2sin1x+sin1(2x1x2)+3cos1xcos1(4x33x)=2sin145+sin1(2×451(45)2)+3cos145cos1(4(45)33×(45))=2sin145+sin12425+3cos145cos1(44125)=2sin145+sin12425+3sin135(πcos144125)=2sin145+sin12425+3sin135+cos144125π=πcheckwithx=45:2sin1x+sin1(2x1x2)+3cos1xcos1(4x33x)=2sin1(45)+sin1(2×451(45)2)+3cos1(45)cos1(4(45)3+3×(45))=2sin145sin12425+3(πcos145)cos144125=3π2sin145sin124253cos145cos144125=π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com