Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 180368 by 281981 last updated on 11/Nov/22

Commented by 281981 last updated on 11/Nov/22

ans:−π where x∈[−1 (1/( (√2)))]

$${ans}:−\pi\:{where}\:{x}\in\left[−\mathrm{1}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right] \\ $$

Commented by mr W last updated on 12/Nov/22

can you please show how you get this  answer?

$${can}\:{you}\:{please}\:{show}\:{how}\:{you}\:{get}\:{this} \\ $$$${answer}? \\ $$

Commented by 281981 last updated on 12/Nov/22

i dont know the answer sir,but   given answer is option 2

$${i}\:{dont}\:{know}\:{the}\:{answer}\:{sir},{but}\: \\ $$$${given}\:{answer}\:{is}\:{option}\:\mathrm{2} \\ $$

Commented by mr W last updated on 12/Nov/22

then the given answer is wrong.  there are multiple right answers.  but it can never be −π.

$${then}\:{the}\:{given}\:{answer}\:{is}\:{wrong}. \\ $$$${there}\:{are}\:{multiple}\:{right}\:{answers}. \\ $$$${but}\:{it}\:{can}\:{never}\:{be}\:−\pi. \\ $$

Commented by 281981 last updated on 13/Nov/22

ok sir,tnq

$${ok}\:{sir},{tnq} \\ $$

Answered by Ar Brandon last updated on 11/Nov/22

Let x=sinθ=cos((π/2)−θ)  ⇒  2θ+sin^(−1) (2sinθcosθ)+3((π/2)−θ)−cos^(−1) (cos(3((π/2)−θ)))  =2θ+2θ+((3π)/2)−3θ−((3π)/2)+3θ=4θ=4sin^(−1) x, x∈[−1, 1]

$$\mathrm{Let}\:{x}=\mathrm{sin}\theta=\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}−\theta\right) \\ $$$$\Rightarrow \\ $$$$\mathrm{2}\theta+\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2sin}\theta\mathrm{cos}\theta\right)+\mathrm{3}\left(\frac{\pi}{\mathrm{2}}−\theta\right)−\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{cos}\left(\mathrm{3}\left(\frac{\pi}{\mathrm{2}}−\theta\right)\right)\right) \\ $$$$=\mathrm{2}\theta+\mathrm{2}\theta+\frac{\mathrm{3}\pi}{\mathrm{2}}−\mathrm{3}\theta−\frac{\mathrm{3}\pi}{\mathrm{2}}+\mathrm{3}\theta=\mathrm{4}\theta=\mathrm{4sin}^{−\mathrm{1}} {x},\:{x}\in\left[−\mathrm{1},\:\mathrm{1}\right] \\ $$

Commented by 281981 last updated on 11/Nov/22

sir answer is option 2

$${sir}\:{answer}\:{is}\:{option}\:\mathrm{2} \\ $$

Commented by 281981 last updated on 11/Nov/22

−𝛑 where x∈[−1 (1/( (√2)))]

$$−\boldsymbol{\pi}\:{where}\:{x}\in\left[−\mathrm{1}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right] \\ $$

Commented by Ar Brandon last updated on 11/Nov/22

OK let's hope another member propose a solution.

Commented by Acem last updated on 12/Nov/22

@281981, well, let′s see your solve

$$@\mathrm{281981},\:{well},\:{let}'{s}\:{see}\:{your}\:{solve} \\ $$

Answered by mr W last updated on 12/Nov/22

let t=cos^(−1) x, 0≤t≤π  ⇒x=cos t  x=cos t=sin ((π/2)−t)  ⇒sin^(−1) x=(π/2)−t  2x(√(1−x^2 ))=2 cos t sin t=sin 2t  ⇒sin^(−1) (2x(√(1−x^2 )))=2t and 0≤t≤(π/4)  4x^3 −3x=4 cos^3  t−3 cos t=cos 3t  ⇒cos^(−1) (4x^3 −3x)=3t and 0≤t≤(π/3)  2 sin^(−1) x+sin^(−1) (2x(√(1−x^2 )))+3 cos^(−1) x−cos^(−1) (4x^3 −3x)  =2((π/2)−t)+2t+3t−3t  =π with 0≤t≤(π/4), i.e. (1/( (√2)))≤x≤1  or  let t=−cos^(−1) x, −π≤t≤0  x=cos (−t)=cos t  .....similarly as above  2 sin^(−1) x+sin^(−1) (2x(√(1−x^2 )))+3 cos^(−1) x−cos^(−1) (4x^3 −3x)  =2((π/2)−t)+2t−3t+3t  =π with −(π/4)≤t≤0, i.e. −1≤x≤−(1/( (√2)))  so we get (at least) two possibilities:  π with x∈[(1/( (√2))),1] or  π with x∈[−1,−(1/( (√2)))]

$${let}\:{t}=\mathrm{cos}^{−\mathrm{1}} {x},\:\mathrm{0}\leqslant{t}\leqslant\pi \\ $$$$\Rightarrow{x}=\mathrm{cos}\:{t} \\ $$$${x}=\mathrm{cos}\:{t}=\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−{t}\right) \\ $$$$\Rightarrow\mathrm{sin}^{−\mathrm{1}} {x}=\frac{\pi}{\mathrm{2}}−{t} \\ $$$$\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }=\mathrm{2}\:\mathrm{cos}\:{t}\:\mathrm{sin}\:{t}=\mathrm{sin}\:\mathrm{2}{t} \\ $$$$\Rightarrow\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)=\mathrm{2}{t}\:{and}\:\mathrm{0}\leqslant{t}\leqslant\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{4}{x}^{\mathrm{3}} −\mathrm{3}{x}=\mathrm{4}\:\mathrm{cos}^{\mathrm{3}} \:{t}−\mathrm{3}\:\mathrm{cos}\:{t}=\mathrm{cos}\:\mathrm{3}{t} \\ $$$$\Rightarrow\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{4}{x}^{\mathrm{3}} −\mathrm{3}{x}\right)=\mathrm{3}{t}\:{and}\:\mathrm{0}\leqslant{t}\leqslant\frac{\pi}{\mathrm{3}} \\ $$$$\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} {x}+\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)+\mathrm{3}\:\mathrm{cos}^{−\mathrm{1}} {x}−\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{4}{x}^{\mathrm{3}} −\mathrm{3}{x}\right) \\ $$$$=\mathrm{2}\left(\frac{\pi}{\mathrm{2}}−{t}\right)+\mathrm{2}{t}+\mathrm{3}{t}−\mathrm{3}{t} \\ $$$$=\pi\:{with}\:\mathrm{0}\leqslant{t}\leqslant\frac{\pi}{\mathrm{4}},\:{i}.{e}.\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\leqslant{x}\leqslant\mathrm{1} \\ $$$${or} \\ $$$${let}\:{t}=−\mathrm{cos}^{−\mathrm{1}} {x},\:−\pi\leqslant{t}\leqslant\mathrm{0} \\ $$$${x}=\mathrm{cos}\:\left(−{t}\right)=\mathrm{cos}\:{t} \\ $$$$.....{similarly}\:{as}\:{above} \\ $$$$\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} {x}+\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)+\mathrm{3}\:\mathrm{cos}^{−\mathrm{1}} {x}−\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{4}{x}^{\mathrm{3}} −\mathrm{3}{x}\right) \\ $$$$=\mathrm{2}\left(\frac{\pi}{\mathrm{2}}−{t}\right)+\mathrm{2}{t}−\mathrm{3}{t}+\mathrm{3}{t} \\ $$$$=\pi\:{with}\:−\frac{\pi}{\mathrm{4}}\leqslant{t}\leqslant\mathrm{0},\:{i}.{e}.\:−\mathrm{1}\leqslant{x}\leqslant−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$${so}\:{we}\:{get}\:\left({at}\:{least}\right)\:{two}\:{possibilities}: \\ $$$$\pi\:{with}\:{x}\in\left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},\mathrm{1}\right]\:{or} \\ $$$$\pi\:{with}\:{x}\in\left[−\mathrm{1},−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right] \\ $$

Commented by mr W last updated on 12/Nov/22

check with x=(4/5):  2 sin^(−1) x+sin^(−1) (2x(√(1−x^2 )))+3 cos^(−1) x−cos^(−1) (4x^3 −3x)  =2 sin^(−1) (4/5)+sin^(−1) (2×(4/5)(√(1−((4/5))^2 )))+3 cos^(−1) (4/5)−cos^(−1) (4((4/5))^3 −3×((4/5)))  =2 sin^(−1) (4/5)+sin^(−1) ((24)/(25))+3 cos^(−1) (4/5)−cos^(−1) (−((44)/(125)))  =2 sin^(−1) (4/5)+sin^(−1) ((24)/(25))+3 sin^(−1) (3/5)−(π−cos^(−1) ((44)/(125)))  =2 sin^(−1) (4/5)+sin^(−1) ((24)/(25))+3 sin^(−1) (3/5)+cos^(−1) ((44)/(125))−π  =π ✓  check with x=−(4/5):  2 sin^(−1) x+sin^(−1) (2x(√(1−x^2 )))+3 cos^(−1) x−cos^(−1) (4x^3 −3x)  =2 sin^(−1) (−(4/5))+sin^(−1) (−2×(4/5)(√(1−((4/5))^2 )))+3 cos^(−1) (−(4/5))−cos^(−1) (−4((4/5))^3 +3×((4/5)))  =−2 sin^(−1) (4/5)−sin^(−1) ((24)/(25))+3(π−cos^(−1) (4/5))−cos^(−1) ((44)/(125))  =3π−2 sin^(−1) (4/5)−sin^(−1) ((24)/(25))−3 cos^(−1) (4/5)−cos^(−1) ((44)/(125))  =π ✓

$${check}\:{with}\:{x}=\frac{\mathrm{4}}{\mathrm{5}}: \\ $$$$\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} {x}+\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)+\mathrm{3}\:\mathrm{cos}^{−\mathrm{1}} {x}−\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{4}{x}^{\mathrm{3}} −\mathrm{3}{x}\right) \\ $$$$=\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}+\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}×\frac{\mathrm{4}}{\mathrm{5}}\sqrt{\mathrm{1}−\left(\frac{\mathrm{4}}{\mathrm{5}}\right)^{\mathrm{2}} }\right)+\mathrm{3}\:\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}−\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{4}\left(\frac{\mathrm{4}}{\mathrm{5}}\right)^{\mathrm{3}} −\mathrm{3}×\left(\frac{\mathrm{4}}{\mathrm{5}}\right)\right) \\ $$$$=\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{24}}{\mathrm{25}}+\mathrm{3}\:\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}−\mathrm{cos}^{−\mathrm{1}} \left(−\frac{\mathrm{44}}{\mathrm{125}}\right) \\ $$$$=\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{24}}{\mathrm{25}}+\mathrm{3}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{5}}−\left(\pi−\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{44}}{\mathrm{125}}\right) \\ $$$$=\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{24}}{\mathrm{25}}+\mathrm{3}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{5}}+\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{44}}{\mathrm{125}}−\pi \\ $$$$=\pi\:\checkmark \\ $$$${check}\:{with}\:{x}=−\frac{\mathrm{4}}{\mathrm{5}}: \\ $$$$\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} {x}+\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)+\mathrm{3}\:\mathrm{cos}^{−\mathrm{1}} {x}−\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{4}{x}^{\mathrm{3}} −\mathrm{3}{x}\right) \\ $$$$=\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \left(−\frac{\mathrm{4}}{\mathrm{5}}\right)+\mathrm{sin}^{−\mathrm{1}} \left(−\mathrm{2}×\frac{\mathrm{4}}{\mathrm{5}}\sqrt{\mathrm{1}−\left(\frac{\mathrm{4}}{\mathrm{5}}\right)^{\mathrm{2}} }\right)+\mathrm{3}\:\mathrm{cos}^{−\mathrm{1}} \left(−\frac{\mathrm{4}}{\mathrm{5}}\right)−\mathrm{cos}^{−\mathrm{1}} \left(−\mathrm{4}\left(\frac{\mathrm{4}}{\mathrm{5}}\right)^{\mathrm{3}} +\mathrm{3}×\left(\frac{\mathrm{4}}{\mathrm{5}}\right)\right) \\ $$$$=−\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}−\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{24}}{\mathrm{25}}+\mathrm{3}\left(\pi−\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}\right)−\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{44}}{\mathrm{125}} \\ $$$$=\mathrm{3}\pi−\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}−\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{24}}{\mathrm{25}}−\mathrm{3}\:\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}−\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{44}}{\mathrm{125}} \\ $$$$=\pi\:\checkmark \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com