All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 180379 by cortano1 last updated on 11/Nov/22
∫x2x6+56dx=?
Answered by Ar Brandon last updated on 11/Nov/22
I=∫x2x6+56dx=56∫x21+(x56)66dx1+x6=1+16x+(16)(−56)x22!+(16)(−56)(−116)x33!+⋅⋅⋅=∑∞n=0(−x)nn!⋅Γ(n−16)Γ(−16)=∑∞n=0(−x)nn!(−16)nI=56∑∞n=0(−1)nn!(−16)n∫x2(x65)ndx=56∑∞n=0(−1)nn!(6n+3)(−16)n15nx6n+3+C=56x36∑∞n=0(−1)nΓ(n+12)n!(n+12)Γ(n+12)(−16)n15nx6n+C=56x36∑∞n=0Γ(n+12)n!Γ(n+32)(−16)n(−x65)n+C=56x36∑∞n=0(12)nΓ(12)n!(32)nΓ(32)(−16)n(−x65)n+C=56x33∑∞n=0(12)n(−16)nn!(32)n(−x65)n+C=1356x32F1(−16,12;32∣−x65)+C
Commented by cortano1 last updated on 12/Nov/22
waw
Terms of Service
Privacy Policy
Contact: info@tinkutara.com