Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 180498 by Spillover last updated on 12/Nov/22

Commented by Frix last updated on 13/Nov/22

more challenging extra work:  ω=(((((log_(a^3 +b^4 ) ^2  z)/(25))−R^2 )^(1/3) ±(((((log_(a^3 +b^4 ) ^2  z)/(25))−R^2 )C)^(2/3) +4L)^(1/2) )/(2C^(1/3) L))

morechallengingextrawork:ω=(loga3+b42z25R2)13±(((loga3+b42z25R2)C)23+4L)122C13L

Commented by Spillover last updated on 13/Nov/22

25 where did you get it from @Frix

25wheredidyougetitfrom@Frix

Commented by Frix last updated on 13/Nov/22

ln z^(1/5) =(√(term))ln (a^3 +b^4 )  ((ln z)/5)=(√(term))ln (a^3 +b^4 )  ((ln z)/(5ln (a^3 +b^4 )))=(√(term))  rule ((ln a)/(ln b))=log_b  a  ((log_(a^3 +b^4 )  z)/5)=(√(term))  ((log_(a^3 +b^4 ) ^2  z)/(25))=term    I wrote ln instead of log, corrected this now

lnz15=termln(a3+b4)lnz5=termln(a3+b4)lnz5ln(a3+b4)=termrulelnalnb=logbaloga3+b4z5=termloga3+b42z25=termIwrotelninsteadoflog,correctedthisnow

Answered by Frix last updated on 13/Nov/22

C=(1/( (√(ω^3 (ωL−((((log_(a^3 +b^4 ) ^2  z)/(25))−R^2 ))^(1/3) )^3 ))))

C=1ω3(ωLloga3+b42z25R23)3

Answered by floor(10²Eta[1]) last updated on 13/Nov/22

lnz^(1/5) =(√(R^2 +(ωL−(1/(ωC^(2/3) )))^3 ))ln(a^3 +b^4 )  (((lnz^(1/5) )/(ln(a^3 +b^4 ))))^2 =R^2 +(ωL−(1/(ωC^(2/3) )))^3   (((((lnz^(1/5) )/(ln(a^3 +b^4 ))))^2 −R^2 ))^(1/3) =ωL−(1/(ωC^(2/3) ))  (1/(ωC^(2/3) ))=ωL−(((((lnz^(1/5) )/(ln(a^3 +b^4 ))))^2 −R^2 ))^(1/3)   (1/C^(2/3) )=ω^2 L−ω(((((lnz^(1/5) )/(ln(a^3 +b^4 ))))^2 −R^2 ))^(1/3)   C^(2/3) =(1/(ω^2 L−ω(((((lnz^(1/5) )/(ln(a^3 +b^4 ))))^2 −R^2 ))^(1/3) ))  C=(1/( (√((ω^2 L−ω(((((lnz^(1/5) )/(ln(a^3 +b^4 ))))^2 −R^2 ))^(1/3) )^3 ))))

lnz1/5=R2+(ωL1ωC2/3)3ln(a3+b4)(lnz1/5ln(a3+b4))2=R2+(ωL1ωC2/3)3(lnz1/5ln(a3+b4))2R23=ωL1ωC2/31ωC2/3=ωL(lnz1/5ln(a3+b4))2R231C2/3=ω2Lω(lnz1/5ln(a3+b4))2R23C2/3=1ω2Lω(lnz1/5ln(a3+b4))2R23C=1(ω2Lω(lnz1/5ln(a3+b4))2R23)3

Commented by Spillover last updated on 13/Nov/22

great.

great.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com