Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 180680 by cortano1 last updated on 15/Nov/22

Answered by ARUNG_Brandon_MBU last updated on 16/Nov/22

I=∫_0 ^1 ((x−1+(√(x^2 +1)))/(x+1+(√(x^2 +1))))dx, x=sinhθ     =∫_0 ^(ln(1+(√2))) ((sinhθ−1+coshθ)/(sinhθ+1+coshθ))(coshθdθ)     =∫_0 ^(ln(1+(√2))) ((e^θ −1)/(e^θ +1))∙((e^(2θ) +1)/(2e^θ ))dθ=(1/2)∫_1 ^(1+(√2)) (((t−1)(t^2 +1))/(t^2 +t))((dt/t))     =(1/2)∫_1 ^(1+(√2)) ((t^3 −t^2 +t−1)/(t^3 +t^2 ))dt=(1/2)∫_1 ^(1+(√2)) (1−((2t^2 −t+1)/(t^3 +t^2 )))dt     =((√2)/2)−(1/2)∫_1 ^(1+(√2)) ((2t^2 −t+1)/(t^2 (t+1)))dt=((√2)/2)−(1/2)∫_1 ^(1+(√2)) ((4/(t+1))−((2t−1)/t^2 ))dt     =((√2)/2)−(1/2)[4ln(t+1)−2ln(t)−(1/t)]_1 ^(1+(√2))      =((√2)/2)−2ln(((2+(√2))/2))+ln(1+(√2))+((1/2)/(1+(√2)))−(1/2)     =(((√2)−1)/2)−2ln(2+(√2))+ln4+ln(1+(√2))+(((√2)−1)/2)     =(√2)−1+ln4−2ln(2+(√2))+ln(1+(√2))

I=01x1+x2+1x+1+x2+1dx,x=sinhθ=0ln(1+2)sinhθ1+coshθsinhθ+1+coshθ(coshθdθ)=0ln(1+2)eθ1eθ+1e2θ+12eθdθ=1211+2(t1)(t2+1)t2+t(dtt)=1211+2t3t2+t1t3+t2dt=1211+2(12t2t+1t3+t2)dt=221211+22t2t+1t2(t+1)dt=221211+2(4t+12t1t2)dt=2212[4ln(t+1)2ln(t)1t]11+2=222ln(2+22)+ln(1+2)+1/21+212=2122ln(2+2)+ln4+ln(1+2)+212=21+ln42ln(2+2)+ln(1+2)

Commented by MJS_new last updated on 16/Nov/22

ln 4 −2ln (2+(√2)) +ln (1+(√2)) =  =ln (((4(1+(√2)))/((2+(√2))^2 ))) =−ln ((1+(√2))/2)  ⇒ our answers are equal

ln42ln(2+2)+ln(1+2)==ln(4(1+2)(2+2)2)=ln1+22ouranswersareequal

Commented by cortano1 last updated on 16/Nov/22

yes..thx

yes..thx

Answered by MJS_new last updated on 16/Nov/22

without substitution:  ∫((x−1+(√(x^2 +1)))/(x+1+(√(x^2 +1))))dx=  =∫((−1+(√(x^2 +1)))/x)dx=  =∫(((1+(√(x^2 +1)))/x)−(2/x))dx=  =∫((x/(−1+(√(x^2 +1))))−(2/x))dx=  =∫((x/(−1+(√(x^2 +1))))−(x/( (√(x^2 +1))))+(x/( (√(x^2 +1))))−(2/x))dx=  =∫((x/( (√(x^2 +1))))×(1/(−1+(√(x^2 +1))))+(x/( (√(x^2 +1))))−(2/x))dx=  =∫((d[−1+(√(x^2 +1))])/(−1+(√(x^2 +1))))+∫d[(√(x^2 +1))]−2∫(dx/x)=  =ln (−1+(√(x^2 +1))) +(√(x^2 +1))−2ln x +C  ⇒  answer is −1+(√2)−ln ((1+(√2))/2)

withoutsubstitution:x1+x2+1x+1+x2+1dx==1+x2+1xdx==(1+x2+1x2x)dx==(x1+x2+12x)dx==(x1+x2+1xx2+1+xx2+12x)dx==(xx2+1×11+x2+1+xx2+12x)dx==d[1+x2+1]1+x2+1+d[x2+1]2dxx==ln(1+x2+1)+x2+12lnx+Cansweris1+2ln1+22

Commented by cortano1 last updated on 16/Nov/22

yes thx

yesthx

Answered by MJS_new last updated on 16/Nov/22

∫((x−1+(√(x^2 +1)))/(x+1+(√(x^2 +1))))dx=       [t=x+(√(x^2 +1)) → dx=((t^2 +1)/(2t^2 ))dt]  =(1/2)∫(((t−1)(t^2 +1))/(t^2 (t+1)))dt=  =∫((1/2)+(1/t)−(2/(t+1))−(1/(2t^2 )))dt=  =(1/2)t+ln t −2ln (t+1) +(1/(2t))=  =((t^2 +1)/(2t))+ln (t/((t+1)^2 )) =  =(√(x^2 +1))+ln ((−1+(√(x^2 +1)))/x^2 )+C

x1+x2+1x+1+x2+1dx=[t=x+x2+1dx=t2+12t2dt]=12(t1)(t2+1)t2(t+1)dt==(12+1t2t+112t2)dt==12t+lnt2ln(t+1)+12t==t2+12t+lnt(t+1)2==x2+1+ln1+x2+1x2+C

Answered by Gamil last updated on 16/Nov/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com