Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 180682 by Mastermind last updated on 15/Nov/22

Determine the value of k such that the  following system has (i) a Unique   solution (ii) No solution (iii) More than  one solution    (a) Kx + y + z = 1      x +Ky + z = 1      x + y + Kz = 1

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{k}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{system}\:\mathrm{has}\:\left(\mathrm{i}\right)\:\mathrm{a}\:\mathrm{Unique}\: \\ $$$$\mathrm{solution}\:\left(\mathrm{ii}\right)\:\mathrm{No}\:\mathrm{solution}\:\left(\mathrm{iii}\right)\:\mathrm{More}\:\mathrm{than} \\ $$$$\mathrm{one}\:\mathrm{solution} \\ $$$$ \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Kx}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{1} \\ $$$$\:\:\:\:\mathrm{x}\:+\mathrm{Ky}\:+\:\mathrm{z}\:=\:\mathrm{1} \\ $$$$\:\:\:\:\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{Kz}\:=\:\mathrm{1} \\ $$

Answered by manolex last updated on 16/Nov/22

 ((k,1,1,1),(1,k,1,1),(1,1,k,1) )   ((1,1,k,1),(1,k,1,1),(k,1,1,1) )  −f_1 +f_2   −kf_1 +f_3    ((1,1,k,1),(0,(k−1),(1−k),0),(0,(−k+1),(−k^2 +1),(−k+1)) )  f_2 +f_1    ((1,1,k,1),(0,(k−1),(1−k),0),(0,0,(2−k−k^2 ),(−k+1)) )  k≠−2;1  z=(((−k+1))/((k+2)(−k+1)))=(1/(k+2))  (k−1)y+(1−k)[(1/(k+2))]=0  y−[(1/(k+2))]=0⇒y=(1/(k+2))  x+[(1/(k+2))]+k[(1/(k+2))]=1  x=1−((k+1)/(k+2))  x=(1/(k+2))  C.S={(1/(k+2));(1/(k+2));(1/(k+2))}  if k=1   ((1,1,1,1),(0,0,0,(0])),(0,0,0,0) )  1eq,3 incog;  0+0+0=0 compatible indeterminado  z=t  y=s  x=1−t−s  C.S={1−t−s;s;t}  if k=−2   ((1,1,(−2),1),(0,(−3),3,0),(0,0,0,3) )  0+0+0=3⇒incompatible .no solution  resumen   determinant ((k,x,y,z,(comentario)),((≠−2;1),(  (1/(k+2))),(1/(k+2)),(1/(k+2)),(all equal)),((    1),(1−t−s),(   s),(   t),(infinitas solution)),((−2),,,,(incompatible solution)))

$$\begin{pmatrix}{{k}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{{k}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{{k}}&{\mathrm{1}}\end{pmatrix} \\ $$$$\begin{pmatrix}{\mathrm{1}}&{\mathrm{1}}&{{k}}&{\mathrm{1}}\\{\mathrm{1}}&{{k}}&{\mathrm{1}}&{\mathrm{1}}\\{{k}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\end{pmatrix} \\ $$$$−{f}_{\mathrm{1}} +{f}_{\mathrm{2}} \\ $$$$−{kf}_{\mathrm{1}} +{f}_{\mathrm{3}} \\ $$$$\begin{pmatrix}{\mathrm{1}}&{\mathrm{1}}&{{k}}&{\mathrm{1}}\\{\mathrm{0}}&{{k}−\mathrm{1}}&{\mathrm{1}−{k}}&{\mathrm{0}}\\{\mathrm{0}}&{−{k}+\mathrm{1}}&{−{k}^{\mathrm{2}} +\mathrm{1}}&{−{k}+\mathrm{1}}\end{pmatrix} \\ $$$${f}_{\mathrm{2}} +{f}_{\mathrm{1}} \\ $$$$\begin{pmatrix}{\mathrm{1}}&{\mathrm{1}}&{{k}}&{\mathrm{1}}\\{\mathrm{0}}&{{k}−\mathrm{1}}&{\mathrm{1}−{k}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{2}−{k}−{k}^{\mathrm{2}} }&{−{k}+\mathrm{1}}\end{pmatrix} \\ $$$${k}\neq−\mathrm{2};\mathrm{1} \\ $$$${z}=\frac{\left(−{k}+\mathrm{1}\right)}{\left({k}+\mathrm{2}\right)\left(−{k}+\mathrm{1}\right)}=\frac{\mathrm{1}}{{k}+\mathrm{2}} \\ $$$$\left({k}−\mathrm{1}\right){y}+\left(\mathrm{1}−{k}\right)\left[\frac{\mathrm{1}}{{k}+\mathrm{2}}\right]=\mathrm{0} \\ $$$${y}−\left[\frac{\mathrm{1}}{{k}+\mathrm{2}}\right]=\mathrm{0}\Rightarrow{y}=\frac{\mathrm{1}}{{k}+\mathrm{2}} \\ $$$${x}+\left[\frac{\mathrm{1}}{{k}+\mathrm{2}}\right]+{k}\left[\frac{\mathrm{1}}{{k}+\mathrm{2}}\right]=\mathrm{1} \\ $$$${x}=\mathrm{1}−\frac{{k}+\mathrm{1}}{{k}+\mathrm{2}} \\ $$$${x}=\frac{\mathrm{1}}{{k}+\mathrm{2}} \\ $$$${C}.{S}=\left\{\frac{\mathrm{1}}{{k}+\mathrm{2}};\frac{\mathrm{1}}{{k}+\mathrm{2}};\frac{\mathrm{1}}{{k}+\mathrm{2}}\right\} \\ $$$${if}\:{k}=\mathrm{1} \\ $$$$\begin{pmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\left.\mathrm{0}\right]}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\end{pmatrix} \\ $$$$\mathrm{1}{eq},\mathrm{3}\:{incog}; \\ $$$$\mathrm{0}+\mathrm{0}+\mathrm{0}=\mathrm{0}\:{compatible}\:{indeterminado} \\ $$$${z}={t} \\ $$$${y}={s} \\ $$$${x}=\mathrm{1}−{t}−{s} \\ $$$${C}.{S}=\left\{\mathrm{1}−{t}−{s};{s};{t}\right\} \\ $$$${if}\:{k}=−\mathrm{2} \\ $$$$\begin{pmatrix}{\mathrm{1}}&{\mathrm{1}}&{−\mathrm{2}}&{\mathrm{1}}\\{\mathrm{0}}&{−\mathrm{3}}&{\mathrm{3}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{3}}\end{pmatrix} \\ $$$$\mathrm{0}+\mathrm{0}+\mathrm{0}=\mathrm{3}\Rightarrow{incompatible}\:.{no}\:{solution} \\ $$$${resumen} \\ $$$$\begin{array}{|c|c|c|c|}{{k}}&\hline{{x}}&\hline{{y}}&\hline{{z}}&\hline{{comentario}}\\{\neq−\mathrm{2};\mathrm{1}}&\hline{\:\:\frac{\mathrm{1}}{{k}+\mathrm{2}}}&\hline{\frac{\mathrm{1}}{{k}+\mathrm{2}}}&\hline{\frac{\mathrm{1}}{{k}+\mathrm{2}}}&\hline{{all}\:{equal}}\\{\:\:\:\:\mathrm{1}}&\hline{\mathrm{1}−{t}−{s}}&\hline{\:\:\:{s}}&\hline{\:\:\:{t}}&\hline{{infinitas}\:{solution}}\\{−\mathrm{2}}&\hline{}&\hline{}&\hline{}&\hline{{incompatible}\:{solution}}\\\hline\end{array} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com