Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 180839 by Mastermind last updated on 17/Nov/22

Find the derivatives f^′ (x) of the  following function with respect to x:  f(x)=Sin(π^(Sinx) +π^(Cosx) ).    Mastermind

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{derivatives}\:\mathrm{f}^{'} \left(\mathrm{x}\right)\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{function}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{x}: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{Sin}\left(\pi^{\mathrm{Sinx}} +\pi^{\mathrm{Cosx}} \right). \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$

Answered by saboorhalimi last updated on 17/Nov/22

 Solution by:  Saboor Halimi   f(x)=Sin(π^(sinx) +π^(cos(x))    f ′ (x)= (π^(sin(x)) cos(x)ln(π)−π^(cosx) sinxln(π))cos(π^(sin(x)) +π^(cos(x)) )

$$\:\boldsymbol{\mathrm{Solution}}\:\boldsymbol{\mathrm{by}}:\:\:\boldsymbol{\mathrm{Saboor}}\:\boldsymbol{\mathrm{Halimi}} \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{Sin}\left(\pi^{\mathrm{sinx}} +\pi^{\mathrm{cos}\left(\mathrm{x}\right)} \right. \\ $$$$\:\mathrm{f}\:'\:\left(\mathrm{x}\right)=\:\left(\pi^{\mathrm{sin}\left(\mathrm{x}\right)} \mathrm{cos}\left(\mathrm{x}\right)\mathrm{ln}\left(\pi\right)−\pi^{\mathrm{cosx}} \mathrm{sinxln}\left(\pi\right)\right)\mathrm{cos}\left(\pi^{\mathrm{sin}\left(\mathrm{x}\right)} +\pi^{\mathrm{cos}\left(\mathrm{x}\right)} \right) \\ $$$$ \\ $$

Commented by Mastermind last updated on 17/Nov/22

With full details explanation pls

$$\mathrm{With}\:\mathrm{full}\:\mathrm{details}\:\mathrm{explanation}\:\mathrm{pls} \\ $$

Commented by Acem last updated on 17/Nov/22

(e^x )′ = x′ e^x  ln e= 1×e^x  ×1= e^x    (a^u )′= ln a× u′×a^u     here a= π   (cos u)′ = −u′ sin u   (sin u)′ = u^′  cos u      [sin (π^(sin x) + π^(cos x) )]^′  = (π^(sin x) + π^(cos x) )′ .cos (π^(sin x) + π^(cos x) )  (π^(sin x) + π^(cos x) )′ = (π^(sin x) )^′  + (π^(cos x) )′        (a^u )′ look above   = ln π.cos x π^( sin x)  − ln π . sin x . π^( cos x)   f(x)′= ln π(cos x π^( sin x)  −  sin x . π^( cos x) )cos (π^(sin x) + π^(cos x) )

$$\left({e}^{{x}} \right)'\:=\:{x}'\:{e}^{{x}} \:\mathrm{ln}\:{e}=\:\mathrm{1}×{e}^{{x}} \:×\mathrm{1}=\:{e}^{{x}} \\ $$$$\:\left({a}^{{u}} \right)'=\:\mathrm{ln}\:{a}×\:{u}'×{a}^{{u}} \:\:\:\:{here}\:{a}=\:\pi \\ $$$$\:\left(\mathrm{cos}\:{u}\right)'\:=\:−{u}'\:\mathrm{sin}\:{u} \\ $$$$\:\left(\mathrm{sin}\:{u}\right)'\:=\:{u}^{'} \:\mathrm{cos}\:{u} \\ $$$$\: \\ $$$$\:\left[\mathrm{sin}\:\left(\pi^{\mathrm{sin}\:{x}} +\:\pi^{\mathrm{cos}\:{x}} \right)\right]^{'} \:=\:\left(\pi^{\mathrm{sin}\:{x}} +\:\pi^{\mathrm{cos}\:{x}} \right)'\:.\mathrm{cos}\:\left(\pi^{\mathrm{sin}\:{x}} +\:\pi^{\mathrm{cos}\:{x}} \right) \\ $$$$\left(\pi^{\mathrm{sin}\:{x}} +\:\pi^{\mathrm{cos}\:{x}} \right)'\:=\:\left(\pi^{\mathrm{sin}\:{x}} \right)^{'} \:+\:\left(\pi^{\mathrm{cos}\:{x}} \right)'\:\:\:\:\:\:\:\:\left({a}^{{u}} \right)'\:{look}\:{above} \\ $$$$\:=\:\mathrm{ln}\:\pi.\mathrm{cos}\:{x}\:\pi^{\:\mathrm{sin}\:{x}} \:−\:\mathrm{ln}\:\pi\:.\:\mathrm{sin}\:{x}\:.\:\pi^{\:\mathrm{cos}\:{x}} \\ $$$${f}\left({x}\right)'=\:\mathrm{ln}\:\pi\left(\mathrm{cos}\:{x}\:\pi^{\:\mathrm{sin}\:{x}} \:−\:\:\mathrm{sin}\:{x}\:.\:\pi^{\:\mathrm{cos}\:{x}} \right)\mathrm{cos}\:\left(\pi^{\mathrm{sin}\:{x}} +\:\pi^{\mathrm{cos}\:{x}} \right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com