Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 180877 by Sheshdevsahu last updated on 18/Nov/22

Q. find the largest value of such that the  positive integers  a, b > 1 satisfy.   a^b .b^a  + a^b  + b^a  = 5329

Q.findthelargestvalueofsuchthatthe positiveintegersa,b>1satisfy. ab.ba+ab+ba=5329

Commented byMJS_new last updated on 18/Nov/22

the largest value of what?  anyway if a, b ∈Z^+ \{1} we have these solutions:  a=3∧b=4∨a=4∧b=3

thelargestvalueofwhat? anywayifa,bZ+{1}wehavethesesolutions: a=3b=4a=4b=3

Answered by Rasheed.Sindhi last updated on 19/Nov/22

 a^b .b^a  + a^b  + b^a  = 5329  a^b (b^a +1)+b^a +1=5330  (a^b +1)(b^a +1)=5330=2∙5∙13∙41    k ∣ 5330 :   a^b +1=k ∧ b^a +1=5330/k  ⇒k=65 , 82   { ((a^b +1=65 ∧ b^a +1=82)),((a^b +1=82 ∧ b^a +1=65)) :}    { ((a^b =64 ∧ b^a =81⇒4^3 =64∧3^4 =81)),((a^b =81 ∧ b^a =64⇒3^4 =81∧4^3 =64)) :}   {a,b}={3,4}

ab.ba+ab+ba=5329 ab(ba+1)+ba+1=5330 (ab+1)(ba+1)=5330=251341 k5330: ab+1=kba+1=5330/k k=65,82 {ab+1=65ba+1=82ab+1=82ba+1=65 {ab=64ba=8143=6434=81ab=81ba=6434=8143=64 {a,b}={3,4}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com