Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 180882 by mr W last updated on 18/Nov/22

Commented by mr W last updated on 18/Nov/22

prove that the lengthes of the blue  lines are 4 times of the  corresponding side lengthes of the  triangle.  all figures which look like squares  are squares.

provethatthelengthesofthebluelinesare4timesofthecorrespondingsidelengthesofthetriangle.allfigureswhichlooklikesquaresaresquares.

Answered by mr W last updated on 19/Nov/22

Commented by mr W last updated on 19/Nov/22

p^2 =b^2 +c^2 −2bc cos (180°−α)      =b^2 +c^2 +2bc cos α      =b^2 +c^2 +(b^2 +c^2 −a^2 )      =2(b^2 +c^2 )−a^2 =4m_a ^2   ⇒p=2m_a  with m_a =median to side a  ((sin α_1 )/c)=((sin α_2 )/b)=((sin α)/p)  sin α_1 =((c sin α)/(2m_a ))=((ac )/(2m_a ))×((sin α)/a)       =((ac)/(2m_a ))×((sin γ)/c)=(a/2)×((sin γ)/m_a )  ⇒that means D lies on the median,  i.e. D is the median center (centoid).  DA=((2m_a )/3)=(p/3)  AA′=p  DA′=(p/3)+p=((4p)/3)  similarly  DB′=((4q)/3)  DC′=((4r)/3)  ΔA′B′C′∼ΔABC  ((B′C′)/(BC))=((DB′)/(DB))=4  B′C′=4a and B′C′//BC  similarly  A′C′=4b and A′C′//AC  A′B′=4c and A′B′//AB

p2=b2+c22bccos(180°α)=b2+c2+2bccosα=b2+c2+(b2+c2a2)=2(b2+c2)a2=4ma2p=2mawithma=mediantosideasinα1c=sinα2b=sinαpsinα1=csinα2ma=ac2ma×sinαa=ac2ma×sinγc=a2×sinγmathatmeansDliesonthemedian,i.e.Disthemediancenter(centoid).DA=2ma3=p3AA=pDA=p3+p=4p3similarlyDB=4q3DC=4r3ΔABCΔABCBCBC=DBDB=4BC=4aandBC//BCsimilarlyAC=4bandAC//ACAB=4candAB//AB

Terms of Service

Privacy Policy

Contact: info@tinkutara.com