Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 1809 by alib last updated on 04/Oct/15

tan a+cot a+tan 3a+cot 3a=((8cos^2 2a)/(sin 6a))

$$\mathrm{tan}\:{a}+\mathrm{cot}\:{a}+\mathrm{tan}\:\mathrm{3}{a}+\mathrm{cot}\:\mathrm{3}{a}=\frac{\mathrm{8cos}\:^{\mathrm{2}} \mathrm{2}{a}}{\mathrm{sin}\:\mathrm{6}{a}} \\ $$$$ \\ $$

Commented by alib last updated on 04/Oct/15

prove

$$\boldsymbol{{prove}} \\ $$

Answered by 112358 last updated on 05/Oct/15

The rhs requires a form in sine  and cosine so we attempt to   simplify the tangent and   cotangent expression in sines  and cosines.  tan(a)+cot(a)=((sin(a))/(cos(a)))+((cos(a))/(sin(a)))                                =((sin^2 a+cos^2 a)/(sin(a)cos(a)))  Since sin^2 (a)+cos^2 (a)=1 and   sin2a=2cos(a)sin(a) we get  tan(a)+cot(a)=(1/((1/2)sin2a))=(2/(sin2a))  Similarly, we obtain  tan(3a)+cot(3a)=(2/(sin6a)).  Therefore,   lhs=(2/(sin2a))+(2/(sin6a))        =((2(sin6a+sin2a))/(sin2asin6a))  The compound formula  sinP+sinQ=2sin(((P+Q)/2))cos(((P−Q)/2))  helps us here with P=6a and  Q=2a.   Thus   sin6a+sin2a=2sin(4a)cos2a  Since sin2F=2sinFcosF   ⇒sin4a=2sin2acos2a.   ∴ sin6a+sin2a=4sin(2a)cos^2 2a  Therefore   lhs=((2(4sin(2a))cos^2 2a)/(sin(2a)sin(6a)))        =((8cos^2 2a)/(sin6a))        =rhs  ■

$${The}\:{rhs}\:{requires}\:{a}\:{form}\:{in}\:{sine} \\ $$$${and}\:{cosine}\:{so}\:{we}\:{attempt}\:{to}\: \\ $$$${simplify}\:{the}\:{tangent}\:{and}\: \\ $$$${cotangent}\:{expression}\:{in}\:{sines} \\ $$$${and}\:{cosines}. \\ $$$${tan}\left({a}\right)+{cot}\left({a}\right)=\frac{{sin}\left({a}\right)}{{cos}\left({a}\right)}+\frac{{cos}\left({a}\right)}{{sin}\left({a}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{sin}^{\mathrm{2}} {a}+{cos}^{\mathrm{2}} {a}}{{sin}\left({a}\right){cos}\left({a}\right)} \\ $$$${Since}\:{sin}^{\mathrm{2}} \left({a}\right)+{cos}^{\mathrm{2}} \left({a}\right)=\mathrm{1}\:{and}\: \\ $$$${sin}\mathrm{2}{a}=\mathrm{2}{cos}\left({a}\right){sin}\left({a}\right)\:{we}\:{get} \\ $$$${tan}\left({a}\right)+{cot}\left({a}\right)=\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{2}{a}}=\frac{\mathrm{2}}{{sin}\mathrm{2}{a}} \\ $$$${Similarly},\:{we}\:{obtain} \\ $$$${tan}\left(\mathrm{3}{a}\right)+{cot}\left(\mathrm{3}{a}\right)=\frac{\mathrm{2}}{{sin}\mathrm{6}{a}}. \\ $$$${Therefore},\: \\ $$$${lhs}=\frac{\mathrm{2}}{{sin}\mathrm{2}{a}}+\frac{\mathrm{2}}{{sin}\mathrm{6}{a}} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{2}\left({sin}\mathrm{6}{a}+{sin}\mathrm{2}{a}\right)}{{sin}\mathrm{2}{asin}\mathrm{6}{a}} \\ $$$${The}\:{compound}\:{formula} \\ $$$${sinP}+{sinQ}=\mathrm{2}{sin}\left(\frac{{P}+{Q}}{\mathrm{2}}\right){cos}\left(\frac{{P}−{Q}}{\mathrm{2}}\right) \\ $$$${helps}\:{us}\:{here}\:{with}\:{P}=\mathrm{6}{a}\:{and} \\ $$$${Q}=\mathrm{2}{a}.\: \\ $$$${Thus}\: \\ $$$${sin}\mathrm{6}{a}+{sin}\mathrm{2}{a}=\mathrm{2}{sin}\left(\mathrm{4}{a}\right){cos}\mathrm{2}{a} \\ $$$${Since}\:{sin}\mathrm{2}{F}=\mathrm{2}{sinFcosF}\: \\ $$$$\Rightarrow{sin}\mathrm{4}{a}=\mathrm{2}{sin}\mathrm{2}{acos}\mathrm{2}{a}.\: \\ $$$$\therefore\:{sin}\mathrm{6}{a}+{sin}\mathrm{2}{a}=\mathrm{4}{sin}\left(\mathrm{2}{a}\right){cos}^{\mathrm{2}} \mathrm{2}{a} \\ $$$${Therefore}\: \\ $$$${lhs}=\frac{\mathrm{2}\left(\mathrm{4}{sin}\left(\mathrm{2}{a}\right)\right){cos}^{\mathrm{2}} \mathrm{2}{a}}{{sin}\left(\mathrm{2}{a}\right){sin}\left(\mathrm{6}{a}\right)} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{8}{cos}^{\mathrm{2}} \mathrm{2}{a}}{{sin}\mathrm{6}{a}} \\ $$$$\:\:\:\:\:\:={rhs}\:\:\blacksquare \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com