Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 180927 by mr W last updated on 19/Nov/22

Commented by mr W last updated on 19/Nov/22

find the area of the square.

findtheareaofthesquare.

Answered by mr W last updated on 20/Nov/22

Commented by mr W last updated on 20/Nov/22

Method I  s=side length of square. its area is s^2 .  cos θ=((7^2 +9^2 −((√2)s)^2 )/(2×7×9))  cos θ=((13^2 +11^2 −(2a)^2 )/(2×13×11))  ((13^2 +11^2 −(2a)^2 )/(2×13×11))=((7^2 +9^2 −((√2)s)^2 )/(2×7×9))  ((145)/(143))−((2a^2 )/(143))=((65)/(63))−(s^2 /(63))  ⇒a^2 =((143s^2 −160)/(126))   ...(I)  cos α=((a^2 +s^2 −6^2 )/(2as))  cos β=((a^2 +s^2 −2^2 )/(2as))  α+β=90° ⇒cos β=sin α  (((a^2 +s^2 −6^2 )/(2as)))^2 +(((a^2 +s^2 −2^2 )/(2as)))^2 =1  (a^2 +s^2 −36)^2 +(a^2 +s^2 −4)^2 =4a^2 s^2   2(a^2 +s^2 )^2 −2(36+4)(a^2 +s^2 )+36^2 +4^2 =4a^2 s^2   ⇒s^4 −40s^2 +(a^2 −20)^2 +256=0   ...(II)  put (I) into (II):  s^4 −40s^2 +(((143s^2 −160)/(126))−20)^2 +256=0  36 325s^4 −1 401 520s^2 +11 246 656=0  ⇒s^2 =((700 760±(√(700 760^2 −36 325×11 246 656)))/(36 325))           =((700 760±287 280)/(36 325))           =((136)/5) or ((82 696)/(7 265)) (rejected)  i.e. the area of the square is ((136)/5).

MethodIs=sidelengthofsquare.itsareaiss2.cosθ=72+92(2s)22×7×9cosθ=132+112(2a)22×13×11132+112(2a)22×13×11=72+92(2s)22×7×91451432a2143=6563s263a2=143s2160126...(I)cosα=a2+s2622ascosβ=a2+s2222asα+β=90°cosβ=sinα(a2+s2622as)2+(a2+s2222as)2=1(a2+s236)2+(a2+s24)2=4a2s22(a2+s2)22(36+4)(a2+s2)+362+42=4a2s2s440s2+(a220)2+256=0...(II)put(I)into(II):s440s2+(143s216012620)2+256=036325s41401520s2+11246656=0s2=700760±700760236325×1124665636325=700760±28728036325=1365or826967265(rejected)i.e.theareaofthesquareis1365.

Answered by mr W last updated on 20/Nov/22

Commented by mr W last updated on 20/Nov/22

Method II  ((√2)s)^2 =7^2 +9^2 −2×7×9 cos θ  ((√2)s)^2 =2^2 +6^2 −2×2×6 cos (α+β)  α+β=180°−θ ⇒cos (α+β)=−cos θ  2s^2 =2^2 +6^2 +2×2×6 cos θ=7^2 +9^2 −2×7×9 cos θ  ⇒cos θ=(3/5)  ⇒s^2 =((130)/2)−63×(3/5)=((136)/5)  i.e. area of square is ((136)/5).

MethodII(2s)2=72+922×7×9cosθ(2s)2=22+622×2×6cos(α+β)α+β=180°θcos(α+β)=cosθ2s2=22+62+2×2×6cosθ=72+922×7×9cosθcosθ=35s2=130263×35=1365i.e.areaofsquareis1365.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com