Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 181020 by mr W last updated on 20/Nov/22

solve for x>0  ∫_0 ^x ⌊t⌋^2 dt=2(x−1)    (Q180780 reposted)

solveforx>0 0xt2dt=2(x1) (Q180780reposted)

Answered by mr W last updated on 20/Nov/22

say x=n+f with 0≤f<1  ⌊x⌋=n  ∫_0 ^x ⌊t⌋^2 dt=Σ_(k=0) ^(n−1) ∫_k ^(k+1) ⌊t⌋^2 dt+∫_n ^x ⌊t⌋^2 dt                   =Σ_(k=0) ^(n−1) ∫_k ^(k+1) k^2 dt+∫_n ^x n^2 dt                   =Σ_(k=0) ^(n−1) k^2 +n^2 (x−n)                   =(((n−1)n(2n−1))/6)+n^2 (x−n)  (((n−1)n(2n−1))/6)+n^2 (x−n)=2(x−1)  (((n−1)n(2n−1))/6)+n^2 f=2(n+f−1)  (2n^2 −n−12)(n−1)=6(2−n^2 )f  n=1:   f=0 ⇒x=1  n=2:  (8−2−12)(2−1)=6(2−4)f  f=(1/2) ⇒x=2+(1/2)=(5/2)  i.e. there are two roots: x=1, (5/2).

sayx=n+fwith0f<1 x=n 0xt2dt=n1k=0kk+1t2dt+nxt2dt =n1k=0kk+1k2dt+nxn2dt =n1k=0k2+n2(xn) =(n1)n(2n1)6+n2(xn) (n1)n(2n1)6+n2(xn)=2(x1) (n1)n(2n1)6+n2f=2(n+f1) (2n2n12)(n1)=6(2n2)f n=1: f=0x=1 n=2: (8212)(21)=6(24)f f=12x=2+12=52 i.e.therearetworoots:x=1,52.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com