All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 181183 by Shrinava last updated on 22/Nov/22
Ωn=|111...112223...2n13233...3n...............1n2n3...nn|,n∈N∗Find:Ω=limn→∞Ωn+1Ωnn
Answered by aleks041103 last updated on 22/Nov/22
thedetermiantD(xi):D(xi)=|11...1x12x22...xn2x13x23...xn3............x1nx2n...xnn|bylaplaceformulaD=ϵi1i2...inxi10xi22xi33...xinn==ϵi1...inxi22...xin2(xi20xi31...xinn−2)==(x1x2...xn)2ϵi1...in1xi12(xi20xi31...xinn−2)ϵkσ(12...(k−1)(k+1)...n)=(−1)sgn(σ)ϵk12...(k−1)(k+1)...n==(−1)sgn(σ)(−1)k−1ϵ12...(k−1)k(k+1)...n==(−1)k−1ϵσ(12..(k−1)(k+1)..n)⇒ϵi1...in=(−1)i1−1ϵi2...in⇒D=(x1x2...xn)2∑ns=1(−1)s−1xs2(ϵi2...inxi20xi31...xinn−2)ij≠s(ϵi2...inxi20xi31...xinn−2)ij≠s=|11...11...1x1x2...xs−1xs+1...xn.....................x1n−2x2n−2...xs−1n−2xs+1n−2...xnn−2|==∏i>j(i,j≠s)(xi−xj)⇒D=(x1x2...xn)2∑ns=1(−1)s−1xs2∏i>j(i,j≠s)(xi−xj)Inourcase:xi=i⇒Ωn=(n!)2∑ns=1(−1)s−1s2∏i>j(i,j≠s)(i−j)∏i>j(i,j≠s)(i−j)=∏i>j(i−j)(∏s>j(s−j))(∏i>s(i−s))∏s>j(s−j)=∏s−1j=1(s−j)=(s−1)(s−2)...2.1=(s−1)!∏i>s(i−s)=∏ni=s+1(i−s)=1.2...(n−s)=(n−s)!∏i>j(i−j)=∏n−1j=1∏ni=j+1(i−j)==∏n−1j=1∏n−ji=1i=∏n−1j=1(n−j)!=∏n−1j=1j!⇒Ωn=(∏n−1j=1j!)(n!)2∑ns=1(−1)s−1s21(s−1)!(n−s)!==(∏nj=1j!)∑ns=1(ns)(−1)s−1s(1−x)n=∑ns=0(ns)(−1)sxs=1−x∑ns=1(ns)(−1)s−1xs−1⇒∑ns=1(ns)(−1)s−1xs−1=1−(1−x)nx⇒∫01(∑ns=1(ns)(−1)s−1xs−1)dx==∑ns=1(ns)(−1)s−1(∫01xs−1dx)==∑ns=1(ns)(−1)ss=∫011−(1−x)nxdx∫011−(1−x)nxdx=∫011−xn1−xdx=∫01∑n−1k=0xkdx==∑n−1k=0∫01xkdx=∑n−1k=01k+1=∑nk=11k=H(n)⇒Ωn=(1!2!...n!)H(n)Ωn+1Ωn=an=(1!2!...n!(n+1)!)H(n+1)(1!2!...n!)H(n)=(n+1)!H(n+1)H(n)L=limn→∞ann=limn→∞an+1an==limn→∞(n+2)!H(n+2)H(n)(n+1)!(H(n+1))2=limn→∞(n+2)H(n)H(n+2)(H(n+1))2H(n)∼ln(n)⇒L=limn→∞(n+2)ln(n)ln(n+2)ln(n+1)ln(n+1)butlimn→∞ln(n)ln(n+1)=1⇒L=limn→∞(n+2)=∞⇒limn→∞Ωn+1Ωnn→∞
Commented by Shrinava last updated on 23/Nov/22
Thankyousomuchmydearprofessor,perfectsolutionasalways
Terms of Service
Privacy Policy
Contact: info@tinkutara.com