Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 181183 by Shrinava last updated on 22/Nov/22

Ω_n  =  determinant ((1,1,1,(...),1),(1,2^2 ,2^3 ,(...),2^n ),(1,3^2 ,3^3 ,(...),3^n ),((...),(...),(...),(...),(...)),(1,n^2 ,n^3 ,(...),n^n ))  ,   n ∈ N^∗   Find:   Ω =lim_(n→∞)  ((Ω_(n+1) /Ω_n ))^(1/n)

Ωn=|111...112223...2n13233...3n...............1n2n3...nn|,nNFind:Ω=limnΩn+1Ωnn

Answered by aleks041103 last updated on 22/Nov/22

the determiant D(x_i ):  D(x_i )= determinant ((1,1,(...),1),(x_1 ^2 ,x_2 ^2 ,(...),x_n ^2 ),(x_1 ^3 ,x_2 ^3 ,(...),x_n ^3 ),((...),(...),(...),(...)),(x_1 ^n ,x_2 ^n ,(...),x_n ^n ))  by laplace formula  D=ε_(i_1 i_2 ...i_n ) x_i_1  ^0 x_i_2  ^2 x_i_3  ^3 ...x_i_n  ^n =  =ε_(i_1 ...i_n ) x_i_2  ^2 ...x_i_n  ^2 (x_i_2  ^0 x_i_3  ^1 ...x_i_n  ^(n−2) )=  =(x_1 x_2 ...x_n )^2 ε_(i_1 ...i_n ) (1/x_i_1  ^2 )(x_i_2  ^0 x_i_3  ^1 ...x_i_n  ^(n−2) )  ε_(k σ(12...(k−1)(k+1)...n)) =(−1)^(sgn(σ)) ε_(k12...(k−1)(k+1)...n) =  =(−1)^(sgn(σ)) (−1)^(k−1) ε_(12...(k−1)k(k+1)...n) =  =(−1)^(k−1) ε_(σ(12..(k−1)(k+1)..n))   ⇒ε_(i_1 ...i_n ) =(−1)^(i_1 −1) ε_(i_2 ...i_n )   ⇒D=(x_1 x_2 ...x_n )^2 Σ_(s=1) ^n (((−1)^(s−1) )/x_s ^2 )(ε_(i_2 ...i_n ) x_i_2  ^0 x_i_3  ^1 ...x_i_n  ^(n−2) )_(i_j ≠s)   (ε_(i_2 ...i_n ) x_i_2  ^0 x_i_3  ^1 ...x_i_n  ^(n−2) )_(i_j ≠s) = determinant ((1,1,(...),1,1,(...),1),(x_1 ,x_2 ,(...),x_(s−1) ,x_(s+1) ,(...),x_n ),((...),(...),(...),(...),(...),(...),(...)),(x_1 ^(n−2) ,x_2 ^(n−2) ,(...),x_(s−1) ^(n−2) ,x_(s+1) ^(n−2) ,(...),x_n ^(n−2) ))=  =Π_(i>j(i,j≠s)) (x_i −x_j )  ⇒D=(x_1 x_2 ...x_n )^2 Σ_(s=1) ^n (((−1)^(s−1) )/x_s ^2 )Π_(i>j(i,j≠s)) (x_i −x_j )  In our case: x_i =i  ⇒Ω_n =(n!)^2 Σ_(s=1) ^n (((−1)^(s−1) )/s^2 )Π_(i>j(i,j≠s)) (i−j)  Π_(i>j(i,j≠s)) (i−j)=((Π_(i>j) (i−j))/((Π_(s>j) (s−j))(Π_(i>s) (i−s))))  Π_(s>j) (s−j)=Π_(j=1) ^(s−1) (s−j)=(s−1)(s−2)...2.1=(s−1)!  Π_(i>s) (i−s)=Π_(i=s+1) ^n (i−s)=1.2...(n−s)=(n−s)!  Π_(i>j) (i−j)=Π_(j=1) ^(n−1) Π_(i=j+1) ^n (i−j)=  =Π_(j=1) ^(n−1) Π_(i=1) ^(n−j) i=Π_(j=1) ^(n−1) (n−j)!=Π_(j=1) ^(n−1) j!  ⇒Ω_n =(Π_(j=1) ^(n−1) j!)(n!)^2 Σ_(s=1) ^n (((−1)^(s−1) )/s^2 ) (1/((s−1)!(n−s)!))=  =(Π_(j=1) ^n j!)Σ_(s=1) ^n  ((n),(s) ) (((−1)^(s−1) )/s)  (1−x)^n =Σ_(s=0) ^n  ((n),(s) ) (−1)^s x^s =1−xΣ_(s=1) ^n  ((n),(s) ) (−1)^(s−1) x^(s−1)   ⇒Σ_(s=1) ^n  ((n),(s) ) (−1)^(s−1) x^(s−1) =((1−(1−x)^n )/x)  ⇒∫_0 ^1 (Σ_(s=1) ^n  ((n),(s) ) (−1)^(s−1) x^(s−1) )dx=  =Σ_(s=1) ^n  ((n),(s) ) (−1)^(s−1) (∫_0 ^1 x^(s−1) dx)=  =Σ_(s=1) ^n  ((n),(s) ) (((−1)^s )/s)=∫_0 ^1 ((1−(1−x)^n )/x)dx  ∫_0 ^1 ((1−(1−x)^n )/x)dx=∫_0 ^1 ((1−x^n )/(1−x))dx=∫_0 ^1 Σ_(k=0) ^(n−1) x^k dx=  =Σ_(k=0) ^(n−1) ∫_0 ^1 x^k dx=Σ_(k=0) ^(n−1) (1/(k+1))=Σ_(k=1) ^n (1/k)=H(n)  ⇒Ω_n =(1!2!...n!)H(n)  (Ω_(n+1) /Ω_n )=a_n =(((1!2!...n!(n+1)!)H(n+1))/((1!2!...n!)H(n)))=(n+1)!((H(n+1))/(H(n)))  L=lim_(n→∞) (a_n )^(1/n) =lim_(n→∞) (a_(n+1) /a_n )=  =lim_(n→∞) (((n+2)!H(n+2)H(n))/((n+1)!(H(n+1))^2 ))=lim_(n→∞) (n+2)((H(n)H(n+2))/((H(n+1))^2 ))  H(n)∼ln(n)  ⇒L=lim_(n→∞) (((n+2)ln(n)ln(n+2))/(ln(n+1)ln(n+1)))  but lim_(n→∞) ((ln(n))/(ln(n+1)))=1⇒  L=lim_(n→∞) (n+2)=∞  ⇒lim_(n→∞) ((Ω_(n+1) /Ω_n ))^(1/n) →∞

thedetermiantD(xi):D(xi)=|11...1x12x22...xn2x13x23...xn3............x1nx2n...xnn|bylaplaceformulaD=ϵi1i2...inxi10xi22xi33...xinn==ϵi1...inxi22...xin2(xi20xi31...xinn2)==(x1x2...xn)2ϵi1...in1xi12(xi20xi31...xinn2)ϵkσ(12...(k1)(k+1)...n)=(1)sgn(σ)ϵk12...(k1)(k+1)...n==(1)sgn(σ)(1)k1ϵ12...(k1)k(k+1)...n==(1)k1ϵσ(12..(k1)(k+1)..n)ϵi1...in=(1)i11ϵi2...inD=(x1x2...xn)2ns=1(1)s1xs2(ϵi2...inxi20xi31...xinn2)ijs(ϵi2...inxi20xi31...xinn2)ijs=|11...11...1x1x2...xs1xs+1...xn.....................x1n2x2n2...xs1n2xs+1n2...xnn2|==i>j(i,js)(xixj)D=(x1x2...xn)2ns=1(1)s1xs2i>j(i,js)(xixj)Inourcase:xi=iΩn=(n!)2ns=1(1)s1s2i>j(i,js)(ij)i>j(i,js)(ij)=i>j(ij)(s>j(sj))(i>s(is))s>j(sj)=s1j=1(sj)=(s1)(s2)...2.1=(s1)!i>s(is)=ni=s+1(is)=1.2...(ns)=(ns)!i>j(ij)=n1j=1ni=j+1(ij)==n1j=1nji=1i=n1j=1(nj)!=n1j=1j!Ωn=(n1j=1j!)(n!)2ns=1(1)s1s21(s1)!(ns)!==(nj=1j!)ns=1(ns)(1)s1s(1x)n=ns=0(ns)(1)sxs=1xns=1(ns)(1)s1xs1ns=1(ns)(1)s1xs1=1(1x)nx01(ns=1(ns)(1)s1xs1)dx==ns=1(ns)(1)s1(01xs1dx)==ns=1(ns)(1)ss=011(1x)nxdx011(1x)nxdx=011xn1xdx=01n1k=0xkdx==n1k=001xkdx=n1k=01k+1=nk=11k=H(n)Ωn=(1!2!...n!)H(n)Ωn+1Ωn=an=(1!2!...n!(n+1)!)H(n+1)(1!2!...n!)H(n)=(n+1)!H(n+1)H(n)L=limnann=limnan+1an==limn(n+2)!H(n+2)H(n)(n+1)!(H(n+1))2=limn(n+2)H(n)H(n+2)(H(n+1))2H(n)ln(n)L=limn(n+2)ln(n)ln(n+2)ln(n+1)ln(n+1)butlimnln(n)ln(n+1)=1L=limn(n+2)=limnΩn+1Ωnn

Commented by Shrinava last updated on 23/Nov/22

Thank you so much my dear professor,  perfect solution as always

Thankyousomuchmydearprofessor,perfectsolutionasalways

Terms of Service

Privacy Policy

Contact: info@tinkutara.com